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1. QUICK SUMMARY OF RESEARCH ACCOMPLISHMENTS

1. A new fast algorithm for solving Toeplitz-plus-Hankel systems of equations. The new

algorithm appears to be 33% faster than the previous approach of reformulating the

problem as a block-Toeplitz system of equations.

2. A new fast algorithm for solving block-Toeplitz-plus-Hankel systems of equations. This

algorithm is useial for linear prediction for two-dimensional random fields defined on

a discrete polar raster. The covariance must be a Toeplitz-plus-Hankel function of

both the radial and &uigular arguments; an isotropic random field has this property.

3. A fast algorithm for linear prediction for three-dimensional random fields defined on

a spherical raster. The covariance must be a Toeplitz-plus-Hankel function of radius

and of the two angular arguments; a time-varying random field that is wide-sense

stationary in time has this property.

4. A discrete form of the Bellman-Siegert-Krein resolvent identity, which can be used to

compute smoothing filters from the prediction filters computed using the algorithms

in #2 and #3 above. This generalizes a one-dimensional (1-D) continuous-parameter

result of Kailath to: (1) the discrete case; and (2) two dimensions (2-D).

5. Two new algorithms for estimating a structured Toeplitz-plus-Hankel covariance func-

tion from time series data in 1-D or 2-D. The estimated covariances have the structure

required by the algorithms in #2 and #3 above.

6. The two-dimensional linear prediction problem on a 2-D polar raster. Includes: (1)

two new algorithms for spectral estimation, using Radon transforms to map the 2-D

problem into 1-D problems; (2) interpolating functions to compute Radon transforms;

and (3) positive-definite covariance extension and correlation matching.

7. Some proposed VLSI implementations of the 1-D and 2-D algorithms described above.

The similarity of these algorithms to finite-difference equations allows VLSI for nfiite-

difference equations to be adapted to these algorithms, with some changes.

8. Demonstrations of the new algorithms applied to the problems of: (1) linear predictive

coding of images defined on a Polar raster-; nd () smoothing ad .estoraticG; of +1,,qe

images. Such images arise in tomography and spotlight synthetic aperture radar.
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2. QUICK REVIEW OF LINEAR PREDICTION FAST ALGORITHMS

Linear least-squares estimation has played an important and useful role in modern

signal processing. It has been applied to problems in one-dimensional prediction and

estimation with considerable success. In roughly the last decade, similar success has been

achieved for multidimensional estimation and smoothing problems. 0

In order to place the results of this report in proper perspective, it is worthwhile to

briefly review some fast algorithms used in linear least squares estimation. More details

on this material are available in Section 2 of Appendix A.

2.1 One-Dimensional Levinson, Schur, and Split Algorithms

In the one-dimensional case, for a wide-sense stationary random process, the linear

prediction problem can be solved efficiently using the celebrated Levinson algorithm [1]. 0

This algorithm utilizes the Toeplitz structure of the covariance matrix to reduce the number

of multiplications required to solve the Nth order prediction problem from the O(N 3 )

required by Gaussian elimination to O(N 2 ). The Levinson algorithm recursively computes •

the prediction filters in increasing order. In the process, it generates a set of reflection

coefficients that constitute an alternative parametrization of the prediction filters.

In the Levinson algorithm, the reflection coefficients must be computed using an "in-

ner product" expression (equation (2-1b) of Appendix A), which accounts for roughly

one-third of the computation in the algorithm. More importantly, this computation is

not parallelizable. The "inner product" computation can be avoided by using the Schur

algorithm [2] to compute the reflection coeffici -nts directly from the covariance of the ran-

dom process. Thus a more efficient procedure for computing the linear prediction filters

is to run the Schur algorithm in parallel with the Levinson algorithm, using the reflection

coefficients computed by the Schur algorithm in the Levinson algorithm [3]. •

Recently Delsarte and Genin [4] noted that a redundancy exists in the lattice com-

putations in the Levinson and Schur algorithms. By replacing the lattice recursions with

a single three-term recurrence, half of the multiplications in the lattice recursions are

avoided. This results in the split Levinson and Schur algorithms, which are obviously more
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efficient implementations of the classical Levinson ad Schur algorithms.

In the split algorithms, the reflection coefficients parametrizing the prediction filters

are replaced by "potentials" that also parametrize these filters. The split Schur algorithm

can be used to compute these potentials from the covariance function; the potentials are

then inserted into a split Levinson algorithms running in parallel. More importantly, the

split algorithms are the axis along which the one-dimensional Levinson and Schur algo-

rithms can be extended to higher dimensions, and to more general covariance structures.

2.2 Two-Dimensional Levinson and Schur Algorithms

There have been several efforts to generalize the Levinson and Schur algorithms to

two dimensions, in order to simplify the solution of the two dimensional linear prediction

problem. We quickly summarize these here; for more details see Appendices A and C.

The usual approach is to assume that a two-dimensional random field is [5]-[7]: (1)

defined on a rectangular array of points; (2) stationary; (3) has quarter-plane or asymmet-

ric half-plane causality, i.e., the linear prediction filter for the random field should have

quarter-plane or asymmetric half-plane support. Then the two-dimensional linear predic-

tion problem can be formulated as a multichannel one-dimensional problem, and solved

using the multichannel Levinson and Schur algorithms [8].

The multichannel Levinson and Schur algorithms are essentially matrix versions of

the one-dimensional algorithms, and they exploit the Toeplitz-block-Toeplitz structure of

the covariance matrix to similarly reduce the number of multiplications needed to solve

the two-dimensional discrete Wiener-Hopf (or Yule-Walker) equations. There are several

variations on this theme, but all essentially reformulate the two-dimensional problem on a

rectangular lattice as a multichannel one-dimensional problem of some kind.
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3. RESEARCH OBJECTIVES

The goals of this project were as follows: 0

1. To develop two-dimensional versions of the Levinson and Schur algorithms that ielax

the causality requirements of existing two-dimensional algorithms, and replace them

with causality assumptions that are more physically reasonable. These algorithms

should also not require stationarity of the random field, but allow a more general

structure in the covariance function;

2. To develop algorithms for the smoothing problem, as opposed to the prediction prob-

lem, for random fields. Since random fields are in general not causally generated, •

the use of the prediction filters computed using the algorithms in #1 is limited to

linear predictive coding of the random field. Linear least squares filters suitable for

reducing noise and restoration should be smoothing filters that use all the noisy data

to estimate the random field at any point;

3. To develop three-dimensional versions of the algorithms in items #1 and #2, suitable

for three-dimensional random fields. Such random fields describe random processes

defined over space, e.g., temperature, images varying in time, etc.;

4. To successfully implement these algorithms, study their numerical behavior, and apply

them to some problems in image restoration, smoothing, and linear predictive coding.

All four goals have been successfully accomplished, as this report will demonstrate.

In addition, we have accomplished the following additional goals:

5. To develop algorithms for estimating from 1-D and 2-D time series data covariances

with the structure required by the above algorithms; •

6. To study the two-dimensional linear prediction problem on a polar raster, and develop

two-dimensional spectral estimation algorithms that ensure non-negative spectral es-

timates;

7. To develop possible VLSI implementations of the generalized Levinson and Schur

algorithms.
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4. RESEARCH ACCOMPLISHMENTS

This section contains a concise summary of our reseawch results. Technical details are

provided in the Appendices, as noted below. Part I includes Sections 4.1-4.5, and covers

development of fast algorithms for determining optimal filters for least-squares estimation

of random fields. Part II includes Sections 4.6-4.9, and covers estimation of structured

covariances from 1-D and 2-D time series data, spectral estimation on a polar raster from

2-D time series data, applications, and VLSI implementations.

All of the results presented below are new contributions to the field of linear prediction.

Part I: Fast Algorithms .or Optimal Filters

4.1 Continuous-Parameter Results

Our original proposal was formulated in continuous-parameter space, since our pre-

liminary results we, a! continuous-parameter algorithms. Specifically, the goal was to

develop fast algorithms for solving the multi-dimensional Wiener-Hopf integral equation

k(x,y) = h(x,y') + j h(x,z)k(z,y)dz, lyH <_ I1I, XY E R",n = 1,2,3

The solution h(x, y) of this integral equation is the optimal linear least-squares filter for

computing the estimate S(x) of a zero-mean random field with covariance k(x, y) from

noisy observations {w(z) = s(z) + v(z), IzI _< Ix}, where v(z) is zero-mean white noise.

In [9] and [10] we noted for n = 3 that if the covariance function k(x, y) satisfies

(A Ay)k(x, y) = 0, then the prediction filter h(x, y) satisfies the differential form

(A_ 2 d 2(A - A,)h(x,y) = V(xe)h(jxle, Y)Izl2de; V(x,e) = --- I d I1 h(x, Ixle)

where S is the unit sphere and e is a unit vector in R'.

The dcrivation of this equation and its implications are discussed extensively in Ap-

pendix A. Here we merely note some significant facts:

1. The differential form can be viewed as some sort of three-dimensional, continuous-

parameter generalization of the split Levirson recurrence. V(x, e) is a similar gener-

alization of the potential in the split algorithms;
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2. A similar differential form, initialized using the covariance function k(x, y), can be

used to compute V(x, e) from k(x, y). This can be viewed as a three-dimensional,

continuous-parameter generalization of the split Schur recurrence;

3. The differential form can be propagated recursively in increasing prediction "order"

jxj, for all Jyj < Izx. In this way, it is possible to solve the three-dimensional Wiener-

Hopf equation recursively in increasing [xl;

4. The structure (At -zhy)k(x,y) = 0 required in the covariance function can be

viewed as a generalization of the block-Toeplitz structure required by previous two-

dimensional Levinson algorithms. However, it is much more general: note that

isotropic (k(x,y) = k(Ix - y[)) and homogeneous (k(x,y) = k(x - y)) random fields

are included as special cases of this structure;

5. The causality assumed in the random field prediction filters h(x, y) is simply that

h(x, y) = 0 for Iy[ > fxJ, i.e., causality is defined simply in terms of radius. This is 0

more reasonable physically than quarter-plane causality, lexicographic ordering, etc.

The above differential forms generate the prediction filter f'or the random field. How-

ever, for estimation, noise reduction, and image restoration, the smoothing filter which

uses all noisy observations (including lyI > Jxl) is desirable. In the one-dimensional case,

Kailath [10] has shown that the smoothing filter can be easily obtained from the pre-

diction filter using the Bellman-Siegert-Krein resolvent identity. For our purposes, this

is simply a differential equation relating the smoothing and prediction filters. A three-

dimensional generalization of the result of [I-0], applicable to the smoothing problem for

three-dimensional random fields, is derived in Appendix A, which consists of the follow-

ing paper: A.E. Yagle, "Analogues of Split Levinson, Schur, and Lattice Algorithms for

Three-Dimensional Random Field Estimation Problems," SIAM J. Appl. Math., vol. 50,

no. 6, pp. 1780-1799, Dec. 1990.

A major part of this project has focused on deriving inherently discrete versions or

counterparts to the above continuous algorithms, and one and two dimensional versions of

the above three-dimensional algorithms. There are several reasons for this:

1. Since the data to be procte' ed is most likely sampled or discrete in nature, the actual

problem of interest is the discrete version;
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2. Any continuous algorithms must ultimately be discretized before they can be imple-

mented on a computer; however, discretization errors will be eliminated if an inher-

ently discrete version of the algorithms, applicable to discrete problems, can be found;

3. The one-dimensional and two-dimensional cases are important in their own right. The

two-dimensional case is particularly important, due to image processing applications;

4. Our initial attempts along these lines qtickly met with success (see below).

4.2 One-Dimensional Toeplitz-Plus-Hankel Systems

The one-dimensional discrete version of this algorithm is quite interesting in its own

right. It is a generalization of the split Levinson and Schur algorithms that solves Toeplitz-

plus-Hankel systems of equations (i.e, systems of equations in which the system matrix is

the sum of an arbitrary Toeplitz matrix and an arbitrary Hankel matrix). This algorithm

requires only half as many multiplications as a previous algorithm [111 for such systems of

equations.

Toeplitz-plus-Hankel systems of equations arise in linear-phase prediction filter design,

the Hildebrand-Prony spectral line estimation procedure, PADE approximation, and at-

mospheric scattering, in addition to the nonstationary process linear prediction application

motivating this algorithm here.

The heart of the algorithm is a four-term recurrence that uses two potentials, as

compared to the usual split algorithm recurrence that is a three-term recurrence using a

single potential. Since a Toeplitz-plus-Hankel system has twice as many degrees of freedom

as the purely Toeplitz system solved by the ,isual split algorithms, this is reasonable, and

it seems to be efficient.

Details are given in Appendix B, which consists of the paper: A.E. Yagle, "New

Analogues of Split Algorithms for Arbitrary Toeplitz-plus-Hankel Matrices," to appear

in IEEE Trans. Signal Processing, vol. ASSP-39, no. 11, Nov. 1991. These include

application to Toeplitz-plus-Hankel normal and Yule-Walker equations, arbitrary Toeplitz-

plus-Hankel systems of equations, and simplifications to the classical split algorithms [4]

for purely Toeplitz systems.
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4.3 Two-Dimensional Block-Toeplitz-Plus-Hankel Systems

The two-dimensional discrete version of this algorithm solves block Toeplitz-plus-

Hankel systems of equat"ins. This algorithm is useful for linear prediction for two-

dimensional random fields defined on a discrete polar raster. The covariance must be

a Toeplitz-plus Hankel function of both the radial and angular arguments; the important

case of an isotropic random field has this property.

Random fields defined on a discrete polar raster arise in tomography and spotlight

synthetic ape 'ure radar. Although such data could be interpolated onto a rectangular

lattice, this is necessarily inexact; it also affects the covariance function. For example, 0

the covariance function for an isotropic random field on a rectangular lattice is a Toeplitz

function of boti, the abscissae and the ordinates, leading to a Toeplitz-block-Toeplitz co-

variance matrix in the two-dimensional discrete Wiener-Hopf equation. The multichannel

Levinson algorithm can be used on this system.

However, the covariance function for an isotropic random field on a polar raster is a

Toeplitz-plus-Hankel function of the radii and a Toeplitz function of the angular arguments,

leading to a block Toeplitz-plus-Hankel covariance matrix in the two-dimensional discrete 0

Wiener-Hopf equation. The multichannel Levinson algorithm cannot be used to solve this

problem-only the new algorithm of this section is applicable.

Remarkably, the basic recurrence for this algorithm is essentially a discrete version of •

the continuous-parameter differential form, with the Laplacians becoming discrete Lapla-

ciais and the integral becoming a sum. This is remarkable since the explicitly discrete

algorithm is an exact solution to the discrete problem, rather than just a discretized form

of the continuous algorit&n. In the continuous limit, the discrete ctigorithm approaches

the continuous differential form, as expected.

Details are given in Appendix C, which consists of the pr ocr: W.-H. Fang and A.E. Ya-

gle, "Discrete Fast Algorithms for Two-Dimensional Linear Prediction on a Polar Raster,"

to appear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992. This

includes a discussion of application to isotropic and other random fields, details of the

reduction to the continuo-us case, and resulting simplifications.
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4.4 Three-Dimensional Block-Toeplitz-Plus-Hankel Systems

The three-dimensional discrete version of this algorithm solves the linear prediction

problem for three-dimensional random fields defined on a spherical raster. The covariance

must be a Toeplitz-plus-Hankel function of radius and of the two angular arguments; a

time-varying random field that is wide-sense stationary in time has this property.

This result is a direct extension of the 2-D algorithm. For a summary and derivation

of this algorithm, see Appendix D.

4.5 One and Two-Dimensional Discrete Bellman-Siegert-Krein (BSK) Re-

solvent Identities

Kailath [10] has note the applicability of the BSK resolvent identity to computing

one-dimensional smoothing filters from prediction filters. We have developed a discrete

b version of Kailath's result, and numerically implemented it. We have also developed a two-

dimensional discrete version of the BSK relating the prediction filters for two-dimensional

random fields on a polar raster to the smoothing filters for such random fields. The two-

dimensional discrete algorithm has also been successfully implemented numerically.

The significance of this result is noted in #3.6 below, in which the improvement in

using smoothing filters instead of prediction filters is demonstrated on several examples.

For a polar raster with N points along each of N radial directions, the number of multi-

plications needed to compute the smoothing filter is reduced from O(N 6 ) using Gausssian

elimination to O(N4 ), if the algorithm in #3.4 is used to compute the prediction filters

and the discrete BSK algorithm is then used to compute the smoothing filters.

0 De' ,iL are given in Appendix E, which consists of the paper: W.-H. Fang and A.E.

Yagle, "Fast Algorithms for Linear Least-Squares Smoothing Problems in One and Two

Dimensions using Generalized Discrete BeUman-Siegert-Krein Resolvent Identities," to ap-

pear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992. It includes details

of the reduction to the continuous case, and resulting simplifications. The continuous case

is treated in [10] for the one-dimensional case, and in Section 5 of Appendix A for the

three-dimensional case.

9



Part II: Algorithms for Covariance and Spectral Estimation

4.6 Structured Estimation of Covariances

This second part covers research into estimating an unknown covariance, with the

(block) Toeplitz-plus-Hankel structure required by the above algorithms, from 1-D or 2-D

time series data. In this section we discuss covariance estimation; in the next, spectral

estimation.

There has been much work on this problem for estimating stationary covariance func-

tions from data. A common procedure is to estimate autocorrelation lags from the data,

form a covariance matrix, and then "Toeplitzify" it by averaging along the diagonals of

the covariance matrix. This procedure projects (defined from the Hilbert-Schmidt inner

product) the data lag matrix onto the subspace of symmetric Toeplitz matrices.

We have extended this approach. We have derived an algorithm that projects the

data lag matrix on the subspace of symmetric Toeplitz-plus-Hankel matrices. This sub-

space is computed using a Gram-Schmidt orthonormalization. The procedure finds the

closest (Hilbert-Schmidt norm) symmetric Toeplitz-plus-Hankel matrix to the given data 0

lag matrix. Unfortunately, this procedure is more complicated than simply averaging

along diagonals. The Toeplitz projection is found this way; however, the Hankel part of

the projection requires weighted sums of some data lag matrix elements.

Due to the complexity of this algorithm, we have developed a second algorithm that

truly generalizes the "Toeplitzation" of averaging along diagonals into a "Toeplitz-plus-

Hankelization" of averaging along diagonals and antidiagonals. The resulting estimated

Toeplitz-plus-Hankel matrix has slightly more structure than required, but the algorithm is

much simpler than the first algorithm. In addition, constraints such as positive definiteness

and rank constraints can be incorporated into a slightly different but equivalent form of

this algorithm. Finally, a two-dimensional version of this latter algorithm has also been

derived.

Details are given in Appendix F, which consists of the paper: W.-H. Fang and A.E.

Yagle, "Two Methods for Toeplitz-plus-Hankel Approximation to a Data Covariance Ma-

trix," to appear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992.
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4.7 2-D Spectral Estimation on a Polar Raster

We consider the following spectral estimation problem. A zero-mean homogeneous

random field is defined on a polar raster. Given discrete sample values inside a disk of

finite radius, estimate the field's power spectral density using a linear prediction model.

Issues arising here include: (1) estimation of covariance lags; (2) extendibility of

a finite set of lag estimates into a positive semi-definite covariance extension (required

for a meaningful spectral density); and (3) in the lack of performing such an extension,

guaranteeing a non-negative spectral density.

Recall that the covariance extension property does not hold on a rectangular raster.

However, we give a generalized autocorrelation procedure that guarantees a positive semi-

definite covariance extension. It first interpolates the data using Gaussians, computes

its Radon transform, and then applies one-dimensional spectral estimation techniques to

each slice. We show that if each 1-D set of covariance lags is positive semi-definite, then

the extended covariance is also positive semi-definite, so that the 2-D spectral estimate is

non-negative and hence meaningful.

The correlation matching property that the extended covariance lags should match

the given covariance lags holds in the Radon domain, but not in the spatial domain. We

also propose a second algorithm that: (1) matches the given covariance lags; and (2)

I' gives a positive semi-definite extension of them, when this is possible. We also discuss

circumstances when this is impossible, shedding some light on 2-D covariance extension.

Details are provided in Appendix G, which consists of the paper: W.-H. Fang and A.E.

Yagle, "Two-Dimensional Linear Prediction and Spectral Estimation on a Polar Raster,"

submitted to IEEE Trans. Signal Processing.

4.8 VLSI Implementations of Fast Algorithms

0 The generalized Levinson and Schur algorithms in Part I are amenable to parallel

implementation. The similarity of their recursions to finite difference equations suggests

that VLSI implementations for finite differences might be applied to these algorithms. This

turns out to be the case, although some changes are required, and certain special cases

allow simpler implementations.

11
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Details are provided in Appendix H, which consists of the paper: W.-H. Fang and

A.E. Yagle, "A Systolic Architecture for New Split Algorithms for Arbitrary Toeplitz-

plus-Hankel Matrices," submitted to IEEE Trans. Signal Processing. 0

4.9 Linear Predictive Coding and Smoothing of Random Fields

The two-dimensional discrete algorithm for random fields on a polar raster has been

applied to linear predictive coding of isotropic random fields on a polar raster. One appli-

cation is in storing images defined on a polar raster (e.g., tomographic data and spotlight

synthetic aperture radar data)-storing the residuals, instead of the original image, requires

much fewer bits.

The results of using the algorithm are compared with the much simpler procedure

of using linear predictive coding independently along each radial slice; this amounts to

assuming each radial slice of the image is independent of each other slice. This is of course 0

not true for an isotropic random field, and our results show the significant improvement

in image compression ratio using the two-dimensional algorithm.

The two-dimensional algorithm is also applied to smoothing isotropic random fields,

in order to reduce noise. This has obvious applications in any setting in which the data

consists of noisy observations of a random field. First the prediction filter alone is used

to estimate the random field (this is analogous to using previous two-dimensional least-

squares filters derived using quarter-plane causality on a rectangular lattice). Then the 0

smoothing filter, derived using the two-dimensional discrete BSK equation, is employed.

The results show considerable improvement (about 8 db) in signal-to-noise ratio when

the smoothing filter is used, and about 1 db improvement when the prediction filter is used

alone. This demonstrates the importance of the BSK equation-the smoothing filters are

indeed necessary.

The results are given in more detail in Appendix I.
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ABSTRACT

Fast algorithms for computing the linear least-squares estimate of a three-dimensional

random field from noisy observations inside a sphere are proposed. The algorithms can be

viewed as three-dimensional analogues of the split Levinson, Schur, and lattice algorithms

of linear prediction, since they exploit an (assumed) Toepiitz-plus-Hankel structure of

the double Radon transform of the random field covariance. Therefore these algorithms

require fewer computations than would solution of the three-dimensional Wiener-Hopf

integral equation. Unlike previous generalized Levinson algorithms, no quarter-plane or

asymmetric half-plane support assumptions for the filter are necessary; nor is the three-

dimensional filtering problem treated as a multichannel (vector) filtering problem.

The algorithms work in three stages. First, the three-dimensional split Schur algo-

rithm computes a potential from the covariance of the random field. This potential is a

three-dimensional analogue of the parameter appearing in the split Levinson algorithm.

Altern&tively, the three-dimensional split lattice algorithm may be used to compute the

potential from the canonical spectral factor of the covariance of the observation field.

Next, the three-dimensional split Levinson algorithm computes the Radon transform of

the three-dimensional prediction filter for estimating the random field on the surface of

the sphere of noisy observations. Finally, this filter is used to compute the smoothing

filter for estimating the random field inside the sphere of observations. The algorithms

generalize known results for isotropic, two-dimensional random fields.
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1. Introduction. The problem of computing linear least-squares estimates of three-

dimensional random fields from noisy observations is important in such fields as meteorol-

ogy and processing of timc varying images. The enormous amount of computa+'on involved

in three-dimensional signal processing requires fast algorithms that exploit any structure

in the problem, and that can be parallelized. The obvious choices of fast algorithms for

computing estimates from covariance information are three-dimensional generalizations of

the one-dimensicnal Levinson, Schur, and lattice algorithms.

Considerable effort has been applied to generalizing the Levinbon algorithm to two

dimensions. Although many useful algorithms have been obtained, all of them require some

assumptions about the flIter, i.e., the order in which the data are processed, as opposed

to the random field itself. The filters constructed from existing two-dimensional Levinson

algorithms are required to have quarter-plane support, or asymmetric half-plane support,

or some other such condition, due to the necessity of imposing some well-defined processing

order on two-dimensional data. Another approach is to assume line-by-line scanning,

so that the two-dimensional estimation problem can be reformulated as a multichannel

one-dimensional problem, to which the multichannel Levinson algorithm can be applied.

Although these assumptions are appropriate for some image processing problems, they are

inappropriate for the general estimation problem. Also, extending these conditions to the

three-dimensional problem is not trivial.

In this paper we take a different approach. Following [1] and [2] we operate di-

rectly on the three-dimensional Wiener-Hopf integral equation, converting it into a three-

dimensional differential form. A Radon transform converts this form into a coupled system

of partial differential equations that can be oropagated, reconstructing the Radon trans-

form of the solution to the integral equation. Alternatively, the differential form can be

propagated directly, without resort to the Radon transform. The coupled system of equa-

tions can be viewed as a three-dimensional, continuous-parameter analogue of the split

Levinson algorithm of linear prediction [3].
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The potential required to propagate these equations is obtained from a three-dimensional

analogue of the split Schur algorithm [3]. The split Schur algorithm is initialized using the 0
covariance of the random field. Alternatively, the potential may be computed by initializing

a three-dimensional analogue of the split lattice algorithm [3]. This algorithm is initialized

using the canonical spectral factor of the double Radon transform of the observation field

covariance.

All of this is a generalization of what the more familiar one-dimensional Levinson,

Schur, and lattice algorithms do, except that the potential function, rather than reflection

coefficients, characterizes the optimal filters. Our nomenclature for the three new algo-

rithms thus follows function, rather than form, although there are some marked similarities

in form as well.

The procedure proposed here has three stages. The random field covariance is as-

sumed to have a three-dimensional displacement property (equation (3-7) below), so that

its double Radon transform has Toeplitz-plus-Hankel structure. Either the random field

covariance, or the canonical spectral factor of the covariance of the observation field, may

be used to initialize the three-dimensional split Schur or lattice algorithms, respectively.

Both of these algorithms compute a three-dimensional version of the potential parameter

appearing in the one-dimensional split Levinson, Schur, and lattice algorithms [3]. Next,

this potential parameter is used in the three-dimensional split Levinson algorithm to com-

pute the Radon transform of the filter for estimating the random field on the surface of a

sphere of noisy observations. Finally, the smoothing fiter for estimating the random field

inside the sphere of observations is obtained from this filter. A similar approach was used

for one-dimensional random fields with Toeplitz covariances in [4], and for two-dimensional

isotropic random fields in [5].

It is important to emphasize that NO assumptions are made on the order of processing

of the data. The filters themselves are generated recursively, but the data is not processed

in any specific order. The fast algorithm is due entirely to the displacement property

4

0



(3-7) of the random field covariance, which is the three-dimensional generalization of the

Toeplitz structure exploited by the one-dimensional Levinson and Schur algorithms.

The numerical performance of the new algorithms has not yet been studied, and so

they should be viewed as only proposed numerical procedures. However, the insight these

algorithms give into the three-dimensional estimation problem, and the way in which they

demonstrate how results for one-dimensional and isotropic two-dimensional random fields

generalize to three dimensions, is of some interest.

The paper is organized as follow. Section 2 quickly reviews the one-dimensional split

Levinson, Schur, and lattice algorithms of [3]. Section 3 specifies the problem in de-

tail, discusses the generalized displacement property (3-7), and quickly reviews the Radon

transform. Section 4 derives the differential form of the three-dimensional Wiener-Hopf

integral equation, and deri-es new fast algorithms to obtain the three-dimensional split

Levinson, Schur, and lattice algorithms. Section 5 notes how the smoothing filter is ob-

tained, and summarizes the three-stage procedure. Section 6 concludes by summarizing

the paper and noting directions for possible future research. Some derivations are relegated

to Appendices.

2. The One-Dimensional Split Algorithms. We quickly summarize the one-

dimensional split Levinson, Schur, and lattice algorithms of [31, and discuss briefly their

scattering interpretations. It should be noted that these algorithms arise in the contexts

of inverse scattering [61, network synthesis [71, and orthogonal polynomials [8]. For a

historical overview of their place in estimation theory, see [9J.

2.1 Classical Levinson Algorithm. Consider the one-dimensional linear prediction

problem of estimating the present value of a zero-mean, stationary, discrete-time random

procis x(i) from observations {z(j), i-n < j< :i-1} of its past n values. It is well known

that the optimal linear prediction filter coefficients can be obtained using the Levinson

algorithm. Let R(z) be the z-transform (where z is the unit delay operator) of one side of
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the covariance sequence of x(i). Then the nth-order prediction error fil'.er An(z) can be

recursively computed as follows [10]:

A,(z) 1 zk, An.1 (z) (2-a)

kn 1 = -An(z)R(z )/(Zn+ P,,)J=O (2 - lb)

P. -- (1 - kn)._ (2 - 1c)

Ao(z) = Bo(z)= 1 (2- ld)

In (2-1b) and the sequel, the notation f(z)I.=o denotes the constant term in the Laurent

expansion of f(z). Equations (2-1) also recursively compute the backwards prediction error

filter Bn(z). This is the error filter for estimating x(i - n - 1) from its future n values

{x(j),i - n < j < i - 1}.

The {kj,i = 1 ... n} characterize the optimal prediction filters of all orders up to n:

given {ki,i = 1... n}, (2-1a) could be sed to compute all of the prediction error filters

{Aj(z), i = 1 ... n}, even though the latter have a total of n(n + 1)/2 coefficients. The

k, are called reflection coefficients, since equations (2-1) can be implemented on a lattice

filter in which signals in one rail are scattered into the other rail, with gain k, in the ith

section of the lattice [11]. This is illustrated in Fig. 1.

Note that the signal propagation in the lattice filter (Fig. 1) is similar to the wave

propagation in a one-dimensional scattering medium probed with an impulsive wave at

the left end. In this case ki is the reflection coefficient a. the ith interface, which reflests

part of the wave travelling in one direction into the wave travelling in the other direction.

The connection between one-dimensional scattering and linear prediction has been noted

in [6] and [12]; as we shall see, this connection generalizes to three dimensions [13].

In the Levinson algorithm the reflection coefficients ki are computed using (2-1b),

which is called the "inner product" computation. Equations (2-1) require 3n multiplica-

tions; one-third of these are in (2-1b). Worse, this is a non-parallelizable computational
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bottleneck; it would be desirable to avoid this computation if possible. This motivates the

next two algorithms.

2.2 Classical Schur Algorithm. If the recursions (2-1a) are initialized using R(z)

instead of (2-1d), the result is the Schur algorithm [14]:

Dn(z)J k. z D.-I(z) (2 -2a)

kn+1 = -Un(z)/(zDn(z))[.=o (2 - 2b)

Do(z) = 1 + R(z); Uo(z) = R(z) (2 - 2c)

The Schur algorithm can be stated in several different forms; we chose this form so

that the recursions (2-2a) match (2-1a). In comparing (2-2) with [3], we have Uk(z) -

j=k+l ekjzj and Dk(z) = 2.j=k ek,k-jz' for the eij and n of [3].

The scattering interpretation of the Schur algorithm is as follows. The Schur algorithm

o) propagates the waves in the lattice structure of Figure 1 resulting from an impulsive

initialization (the "1" in (2-2c)) at its left end. Hence it computes the ki from the reflection

response R(z).

Note that in the Schur algorithm the ki are computed using (2-2b), which is not

an "inner product" computation (it requires only a single division). Hence the Schur

algorithm can be propagated ,i parallel with the Levinson algorithm, solely for the purpose

of computing the reflection coefficients ki, and thus avoiding the inner product (2-1b)

required by the Levinson algorithm alone [15].

2.3 Classical Lattice Algorithm. Now let X(z) be the spectral factor of the two-

sided covariance sequence of z(i), i.e.,

1 + R(z) + R(1/z) = X(z)X(1/z). (2 - 3)

If the recursions (2-1a) are initialized using X(z) instead of (2-1d), the result is the lattice
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algorithm [16]:

F.(z) 1 Z [1 zk . 1(z) (2-4a)

kn+1 = -Xn(z)Gn(1/z)/(z n~ l Pn)Iz=O (2 - 4b)

Pn (1 -k')Pn_ (2 - 4c)

Fo(z) = Go(z) = X(z) (2 - 4d)

Note that in the lattice algorithm an "inner product" computation (2-4b) is required.

Hence its only advantage over the Levinson algorithm is that, given knowledge of X(z)

instead of R(z), it avoids the computation (2-3).

The scattering interpretation of the lattice algorithm is as follows [17]. The lattice

algorithm propagates the waves in the lattice structure resulting from an impulsive initial-

ization at its right end. Hence it computes the ki from the transmission response X(z).

The reflection response R(z) and transmission response X(z) are related by (2-3) [18].

2.4 Split Levinson Algorithm. There is some redundancy in the above algorithms.

Defining h,(z) from (2-1a) as

h.(z) =A,(z) +zB.(z) (2 -5)

it may be shown using (2-1) [3] that hn(z) satisfies the three-term recurrence

hn+l(z) = (z + I)hn(z) - zanhn._(z) (2 - 6a)

ho(z) = 1 + z; h-(z) = 2 (2-6b)

and that an may be computed using

= V"/V-; n = R(z)h.(z)/z"+1 jo (2 -7)

Equations (2-6) and (2-7) constitute the split Levinson algorithm. h-l(z) is defined from

(2-5) to initialize the three-term recurrence. The point is that the two coupled recursions
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(2-1a) are replaced by the three-term recurrence (2-6). Since (2-6) only requires n multi-

plications, while (2-1a) requires 2n, using (2-6) saves 50% of the multiplications. However,

note that an "inner product" computation (2-7) is still required at each recursion.

The {a I} characterize the optimal filters of all orders just as the {ki } do; indeed we

have [3]

an = (1 + kn)(i - k.- 1). (2-8)

Also, the quantity Sn(z) = hn(z)/wn, where w = z1 /2 , satisfies

S+ 1 (z) + -S,-i(z) - (w + i/w)S,(z) = VnS._I(z) (2 - 9a)

Vn = 1 -an (2- 9b)

Equation (2-9) has the form of a discrete Schrodinger equation [19]. Since a scattering

interpretation can be assigned to the lattice-based algorithms, a reformulation of these

algorithms in terms of a discrete Schrodinger equation is not surprising.

Note that the scattering potential Vn is simply 1 - a,; in the sequel we refer to

a, as a potential. Thus the split algorithms can be interpreted as propagating the field

quantitites (voltage, pressure, etc.) associated with the scattering medium, while the

classical algorithms propagate waves in the scattering medium. For more details see (171.

Since the decomposition of the field quantity into forward and backward travelling

waves is not possible in three dimensions, only the split algorithms can be generalized to

three dimensions. The potential V defined in (2-9b) generalizes to three dimensions (see

0 (4-2) below), but there axe additional dependencies in it.

2.5 Split Schur Algorithm. Defining vn(z) from (2-2a) as

,V,,(z) = U.(z) + zDn(z) (2 - 10)

it may be shown using (2-2) [3) that Vn(Z) and an can be computed using the split Schur

algorithm:

V, 1 (Z) = (z + 1)V,,(Z) - za,,V .i(z) (2 - 11a)
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...n-1. " .(Z)/Z"ll1.=0 2 1baln = n/VnI, n V n  (2-1b

vo(z) = z + R(z) + zR(z); v-.(z) = 1 + 2R(z) (2 - 11c)

v-1 (z) is defined from (2-10) to initialize the three-term recurrence. In comparing (2-11)

with (18) of [3], note that Vk(Z) = Vk],-=+1 v k - lZj for the vij and n of [3].

As with the Levinson algorithm, the split Schur algorithm (2-11) requires only 53%

as many multiplications as the classical Schur algorithm (2-2) Also, note that there is

no "inner product" computation, so that the split Levinson and Schur algorithms can be

propagated together, with the split Schur algorithm replacing the "inner product" (2-7).

2.6 Split Lattice Algorithm. Defining un(z) from (2-4a) as

u(z) = F.(z) + zG.(z) (2- 12)

it may be shown using (2-4) [3] that u,(z) and a. can be computed using the split lattice

algorithm:

u.+1(z) = (z + 1)u.(z) - zanu._I(z) (2 - 13a)

an= Vv-1;, v Un(Z) un(1/Z)I=o (2 - 13b)

uo(z) = (1 + z)X(z); u_,(z) = 2X(z) (2 - 13c)

u-I(z) is defined from (2-12) to initialize the three-term recurrence. Again (2-13a) requires

only 50% as many multiplicetions as (2-4a). However, the "inner product" (2-13b) is still

necessary. Civen knowledge of X(z), instead of R(z), the split lattice algorithm could be
0

used to compute the ki without the computation (2-3).

2.7 Continuous Parameter Forms. The continuous-parameter form of the three-

term recurrence (2-6) (and also (2-11a) and (2-13a)) is determined by noting that (2-6)

is related to a discrete Schrodinger equation (2-9a) by a simple delay. The continuous-

parameter Schrodinger equation in the time domain is
02 2 (-4
( O2- -y2 )h(x,y) = V(x)h(x,y) (2-14
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where h(x, y) is the continuous-parameter version of h.(z) (y is time). Equation (2-14)

describes a continuous one-dimensional scatter;ng medium with continuous scattering po-

tential V(x) (the continuous version of (2-9b)). It is also the equation for a vibrating,

elastically-based string -'sed in [4] for one-d;mensional linear estimation problems.

In the following sections the three-dimensional version of (2-14) is used for three-

dimensional linear estimation problems. It should be clear why this can be construed

as a three-dimensional, continuous-parameter analogue of the three-term recurrences that

constitute the one-dimensional split algorithms.

3. Basic Equations

3.1 Problem Specification. The basic problem is as follows. Let

w(x) =s(x)+v(x), xER 3  (3-1)

be some noisy observations of a zero-mean real-valued random field s(x) having covariance

E[s(x)s(y)] = k(x, y). (3 - 2)

v(x) is a zero-mean real-valued white noise field with covariance

E[v(x)v(y)] = 6(x - y) (3 - 3)

and v(x) is uncorrelated with s(x).

We wish to compute the linear least-squares estimate S(x) of s(x) given the noisy

ob: irvations w(x) inside a sphere of radius T, i.e., given {w(y), ly1 < T}. To be exact, we

wish to compute the conditional mean E[s(x)WI, where W is the Hilbert space spanned

by {w(y), yj < T}. The estimation problem then reduces to computing the optimal filter

g(x, y; T), which in turn yields S(z) by

(X J g(z, y; T)w(y)dy = J g(z, lyle;T)w(lyle)y 2 dedlyl, Jxz < T. (3-4)
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Here S is the unit sphere and y = lyfe, where e is a unit vector. de is the differential area

on the surface of the unit sphere S; in standard spherical coordinates de = sin O dO d.

By the orthogonality principle, g(x, y; T) solves the three-dimensional Fredholm integral

equation of the second kind

k(x,y) =g(x,y;T)+fo g(, re;T)k(re, y)r 2dedr, 0 _ Ix , lyi 1 T (3-5)

Most of this paper will be concerned with the intermediate problem of computing the

linear least-squares estimate of s(x) given the noisy observations {w(y), fyi lxi}. This is

the filtering problem of estimating s(x) on the surface of the sphere of observations. It can

also be viewed as the three-dimensional analogue of the linear prediction problem solved

by the Levinson algorithm in one dimension. The forward and backward predictors for

either end of the segment of observations generalize to the predictors for all points on the

surface of the sphere of radius lxi.
The optimal filter for this problem is h(x, y), for which the Fredholm integral equation

(3-5) becomes the Wiener-Hopf integral equation

k(x,y) = h(x,y) + h(x,z)k(z,y)dz. 1y[ _< li. (3-6)

Without loss of generality, we define h(x, y) = 0 for jy[ > [x[. h(x, y) can be viewed as

the analogue of a continuous-parameter quarter-plane autoregressive filter, except that the

causality is defined in terms of ixi and fyj, so that there is no "corner" and no ambiguity

over in which direction to proceed. In Section 5 we show that g(x, y; T), the ultimate goal,

can be obtained easily from h(x, y).

The function k(x, y) is assumed to be positive definite, and it is assumed to have the

generalized dijplacement p.operty [131

(Az - AI y) = 0 (3-7)

where Az is the Laplacian with respect to x E R3 , and similarly for A,. Equation (3-

7) is a direct generalization of the Toeplitz-plus-Hankel structure exploited by the one-
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dimensional Levinson, Schur, and lattice algorithms. The structure (3-7) of the covariance

makes possible fast algorithms for solving the integral equation (3-6).

The structure of k(x, y) implied by (3-7) reduces the number of degrees of freedom

in the function k(x, y) from six to five. This is still far more general than the case of a

homogeneous random field having covariance k(x - y) (three degrees of freedom) treated

in [1], or the case of an isotropic random field having covariance k(Ix - yl) (one degree

of freedom) treated in [5]. Note that both homogeneous and isotropic random fields are

included as special cases of the property (3-7). Note also that not all three components

of x and y need refer to spatial variables; a two-dimensional time-varying random field

whose spatial covariance satisfies the two-dimensional version of (3-7), and which is also

stationary in time, would satisfy (3-7).

3.2 The Radon Transform. The Radon transform will be used extensively through-

out this paper. The Radon transform of a function f(x), x E R3 is defined as

IZ{f(.)}(r, e) = f(r, e) = J f(x)6(r - e . x)dx (3-8)

so that it is the integral of f(x) over the plane r = e x. Note that r, e) = (-r, -e).

Thc. inverse Radon transform is

f(X) = {f(.,.)}(X) = - 1,2(r,e)S(r - e . x)dr de (3-9)

A good treatment of the Radon transform is [20].

An important property of the Radon transform is the projection-slice theorem [20]

1Z{f(.)}(T,e) = Yjk_.....r{.FZ'._l{f(X)1} (3- 10)

Here.F'kll- denotes a one-dimensional inverse Fourier transform taking IkI into r, with Iki

extended to negative values by conjugate symmetry. Fz-Ie denotes a three-dimensional

Fourier transform taking X E R 3 into Ikle.
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Another important property, which is the motivation for using the Radon transform

in this paper, is [20]

Z{A-f(')}(r, e) = - 27f{f(.)} (r, e). (3-11)

Using (3-11), it may be shown that a covariance function satisfying (3-7) will have a

Toeplitz-plus-Hankel structure in the double Radon transform domain. To see this, take

the double Radon transform of (3-7). This gives

(a72 - ) k(r 1 , r2 ,el,e 2 ) = 0 (3 - 12a)

k(ri,r2,e,e-2lC2) = R.. l,i l 2,e2 {k(,y)}. (3- 12b)

where l.r,, 1 denotes the Radon transform taking x E R3 into (r1 ,el). This in turn

implies the existence of functions ki (.) and k2(') such that

k(Tl, 2 , el,e 2) = kl(Tl - 72 ,el,e 2)+ k 2 (rl + -2 ,el,e 2 ) (3-13)

i.e., that k(rl, r2, el, e2 ) has Toeplitz-plus-Hankel structure. This is the structure that

makes possible a fast algorithm solution to (3-6).

4. Three-Dimensional Split Algorithms. In this section fast algorithms for

computing the filter h(x, y) from the covariance k(x, y) are derived. These algorithms

axe three-dimensional analogues of the split algorithms discussed in Section 2. The basic

recursion is a three-dimensional generalization of (2-14).

4.1 Differential Form of the Wiener-Hopf Equation 0

A. The Differential Form in z and y

Applying the operator (A. - A,) to the integral equation (3-6) and using the gener-

alized displacement property (3-7), Green's theorem, and the unicity of solution to (3-6) •

when k(z, y) is positive definite and both k(x, y) and h(z, y) are L 2 yields, after some

algebra (see Appendix A),

(AZ - A,)h(z,y) = js V(e)h(IxleY)IXz2de (4-1) 0
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where the non-local filter potential V(x, e) is defined as
2 d

V(-,-e) = I2 dllh(x, izie). (4- 2)

Note that although the Wiener-Hopf equation (3-6) is only valid for iyl < Ilx, the differen-

tial form (4-1) is valid for all x and y, since for jy! > jxj we have trivially 0 = 0. Equation

(4-1) is a direct generalization of (2-14) to three dimensions; the only difference is the

extra dependence in the potential V(x, e). Even this is not surprising; since k(x, y) has

five degrees of freedom, h(x, y) does also, and thus the potential function characterizing

the h(x, y) must also have five degrees of freedom.

B. The Three-Dimensional Split Levinson Algorithm of /1]

In [1] the differential form (4-1) was propagated recursively in increasing Ilx and

*lyl jx!, yielding h(x, y). At each recursion, the potential V(x, e) was obtained directly

from the integral equation (3-6) using k(x, y) and the previously computed values of h(x, y),

as follows:

V(x, e) 2 d 1 X2 (k(x, lx[e) - h(x,z)k(z, lxe)dz) (4-3)

The fast algorithm proposed in [1] for homogeneous random fields is as follows. Equation

(4-1) is discretized into a three-term recurrence in increasing Ilx and hi!, and propagated

along with (4-3). The recursion pattern for updating h(x,y) in lxi and Iyl using the

discretized (4-,) is illustrate1 in Fig. 2.

Note that (4-3) is necessary to compute V(x, e), since the boundary values h(x, Ixle)

and their gradients appearing in (4-2) cannot be computed using (4-1) alone, due to the

support of h(x, y). Examination of the recursion pattern illustrated in Fig. 2 makes this

clear. This is analogous to the one-dimensional Levinson algorithm, in which k. is the

coefficient of z' in An(z); this coefficient is not computed by (2-1a), so that (2-1b) must

also be used.

The computation involved in (4-3), which is a three-dimensional analogue to the "inner
I

product" computation (2-7) in the one-dimensional split Levinson algorithm (but much

15

I



worse), is excessive. Furthermore, it would be desirable not to have to compute Laplacians

in both x and y. The former computation can be avoided using three-dimensional split

Schur or lattice algorithms (see 4.3 and 4.4 below). The transverse part of the Laplacian

in y can be eliminated using the Radon transform, as we now demonstrate.

4.2 Three-Dimensional Split Levinson Algorithm 0

A. The Differential Form in z and t

Since (4-1) holds for all x and y, we can perform a Radon transform of (4-1) taking y

into t and ej. Using (3-11), this yields 0

(A - -5T2)h(x, t, e,) == jsV(, e)h(jxe, t, e)x'de (4-4)

Equation (4-4) describes a continuous three-dimensional scattering medium with non-local 0

scattering potential V(x, e). Aside from the non-local nature of the potential, equation

(4-4) is a direct generalization of (2-14) to three dimensions.

Next, note that the Laplacian operator A can be written as 0

a=02 + 2 a +AT (4-5)
OI1 2  IxI OLzl

where AT... 1 8 ( -8'\- 1 82(4 )

AT I2 sinOa (sinGa) + in a2 (4-6) 0

is the transverse radial Laplacian operator in spherical coordinates. Equation (4-4) can

now be written as

a2 2jj -X rte,) = H(,t,e) (4-7)

where

H(x,t, e) = -ATh(x,t,e,) + is V('e)h(zle't'e)zI2 de (4-8)

is an auxiliary quantity. Equations (4-7) and (4-8) can be combined into

l2 2I, V(x, )hCxle, t,ej)l-12 deATh(X,t,e,)) (4-9)
-I1 Olt 2 6 X7 t, e) =IXIjVzehIetele( is)
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Equation (4-9), which is the heart of the three-dimensional split Levinson and lattice

algorithms, should be compared with (2-14).

B. Three-Dimensional Split Levinson Algorithm

The three-dimensional split Levinson algorithm consists of (4-9), propagated as a re-

currence in discretized IxI and t, and the Radon transform of (4-3). The recursion pattern

for updating h(x,, e,) using the discretized (4-9) is illustrated in Fig. 3. The discretized

(4-9) has the same form as the discrete Schrodinger equation (2-9a), except for the following

differences:

1. A separate set of recurrences is required for each ei and e, = x/Ixt. The recurrences

are independent, and completely parallelizable;

2. The simple multiplication by the potential in (2-9a) and (2-14) becomes a integration

over the unit sphere;

3. h(x,t, ei) and H(x,t, ei) are weighted by Iz, since the recursion is in the increasing

radius jxj of a sphere;

4. The transverse Laplacian AT must be computed at each recursion. Since this involves

only values of h(x, t, e,) on the surface of the sphere of radius Ix1, this can be done at

each recursion. It should be noted that since differentiation is numerically unstable,

some regularizing procedure will be needed for this computation.

5. The inverse Radon transform of h(x, t, e,) must be computed at the end of the proce-

dure.

C. Computation of Boundary Values on t = ±xj

Since h(x,y) = 0 for Ijy > (xi, we have h(z,t, e,) = 0 for t > (x. This follows since the

plane t = ej .y passes only through values of y such that IyI > t > Jlx, and h(x,y) = 0 for

such values. Since the characteristics of (4-9) are t = ±zI, the recurrence relation (4-9)

will determine h(z,t, e,) for all -Il < t < jxj, and all non-zero values of h(z,t, ei), except

for t = +lxj, will be computed.

The points on the characteristics t = ±Izl that are not computed in the course of the
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recurrences (4-9) can be found using

h(Xt = -IxI,e.) = h(x,t = Ixl,-e,) (4 - 10a) S

+ Ilxh(x,t = IxI, e,) -Ixl 3V(x,ei)/2 (4- 10b)

where the latter is derived in Appendix B using (4-2). Note from (4-10b) that again V(x, e)

is not computed as part of the recursions (4-9)-it must be supplied separately, using the

Radon transform of (4-3). Also, using (4-9) and (4-10), it can be seen that knowledge of

V(x, e) suffices to compute h(z, y). Thus the potentials V(z, e) characterize the optimal

filters, just as the reflection coefficients do in the one-dimensional case. 0

As in the one-dimensional case, we now show how three-dimensional split S&t" and

lattice algorithms may be used to avoid the computation (4-3) in the three-dimen.-onal

split Levinson algorithm. 0

4.3 Three-Dimensional Split Schur Algorithm. The split Schur algorithm must

be propagated in x and y, rather than in x and t. The reason for this is that the Schur

algorithm propagates the convolution of the prediction error filter and the observation

field covariance, which is zero for kyl < Ixj by the orthogonality principle. However, the

triangularity property of being zero for IyI < IxI does NOT map to the Radon transform

domain. This is unlike the Levinson algorithm, in which h(x, y) = 0 for IyI > IlxI implies

h(x, t, e) = 0 for t > Ix1. Since the triangularity property is the essential structure of the

Schur algorithm (in one or three dimensions), we are forced back to the x - y domain.

A. Differential Form in z and y

In this section we define the residual error filter 4(x, y), the residual X(x, y), and we

show that both satisfy the differential form (4-1). In doing so we make use of propagation

of singularities arguments, in which coefficients of different orders of singularities (delta

functions, doublets, etc.) are equated. This can be viewed as equating coefficients of s

in Laurent expansions of Laplace transforms; similar reasoning is used to derive transport

equations. For more details see [22].
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First, we must d flne the spectral density M(k, el, e2 ). The structure (3-7) of k(x, y)

implies that its double Fourier transform is zero except for its on-shell values. More

specifically, the covariance of the observation field w(x) has the property that

J-._k,e-Fy,-k,e{(x - y) + k(x, y)} = M(k 1, e1 ,e 2 )6(IkI 12 - Jk212 ) (4 - 11)

for some function M(k, el, e2 ).

As an aside, note that the projection-slice theorem (3-10) implies that

k(r,ele 2 )= 7-- 7- 2M(kele)( 1k212 )}

= ki(ri - r2, e l , e2) + k2(r + 72, el, e2 ) (4 - 12)

so that k(rn, r 2 , el, e2) has Toeplitz-plus-Hankel structure in the double Radon transform

domain, in agreement with (3-13).

Next, define the residual filter O(x, y) as

¢(x, y) = b(x - y) - h(x, y) (4 -13)

O(x, y) converts the observation field w(x) into the residual field w(x)- (xlw(y), hyl 1" IxL).

Finally, define the residual X(x, y) as

x(X, Y) = J O(z, z)(6(z - y) + k(z, y))dz (4-14)

X(x, y) is the convolution of the prediction error filter and the observation field covariance,

just as in the one-dimensional case. Using Parseval's theorem on (4-14), we have

(z, k2,e2) = F--k2, , 2f{X(X, Y)I = J 4 (zk3,e 3 M (k2,e 2,e 3)b(Ik2 12 Ik3 )lk3 12de3 dk3

= fs (x, k2, e)M*(k2, e2, e3 )Ik212de3  (4-15)

We now show that ,(x, y) and X(x, y) both satisfy (4-1). Apply the operator A, - AY

to (4-13), and recal' that h(z,y) = h(x,y)l(Ixl - Il), where 1(-) is the unit step or
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Heaviside function (this expresses the support constraint for h(x, y)). Equating coefficients

of singularities (delta functions) and using (4-1) and (4-2) shows that ¢(x, y) satisfies (4-1).

Fourier transforming (4-1) with respect to y, and a linearity argument using (4-15), show

that X(x, y) satisfies (4-1) as well.

B. Recursions

By the orthogonality principle we have X(x,y) = 0 for IyI < Ix1. Then, since O(x,y)

contains an impulse 6(x - y), X(x y) must contain one also, and thus it has the form

X(x, y) = ,(x - y) + v(X, y)1(IY I - X1) (4 - 16)

Inserting (4-16) into the differential form (4-1) and equating coefficients of singularities

results in

(AX - AY)v(X,Y) = LV(xe)v(lxley)lxl2de (4- 17a)

V(x,e) = -2 (1+X -j1Y )v(x,y- = x) (4- 17b)

Equations (4-17) constitute the recursions for the three-dime ;sional split Schur al-

gorithm. v(x,y) is propagated in increasing jxi and IyI > lx[ using (4-17a), and V(x,e)

reconstructed using (4-17b). The recursion pattern for updating v(x,y) is il'ustrated in

Fig. 4. Note that V(x, e) is computed directly by the recursions (4-17a); no "inner prod-

uct" computation is required. The computed V(x, e) is then inserted in (4-1) or (4-9) to

compute h(x, y) via the three-dimensional split Levinson algorithm, avoiding the "inner

product" (4-3).

C. Initialization

The split Schur algorithm is initialized by setting lxj = 0 in (4-14). This results in

v(O,y) = k(O,y) (4- 18a)

V(O,2Y) = + (4- 18b)
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Note that the dependence of k(x, y) on e = x/IxI for small lxi is needed in (4-18b). This

ensures the five degrees of freedom in the data necessary to compute V(x, e), which also

has five degrees of freedom.

D. Interpretation

The split Schur algorithm propagates X(x, y), which is zero for IyI < Jxi by the or-

thogonality principle. This is the stochastic interpretation. However, the scattering in-

terpretation is inore illuminating. The form of (4-16) suggests that x(x, y) results from

initializing (4-1) with an impulse in x and y at the origin x = 0, which spreads out in

increasing IxJ along the characteristic Iyj -xi (note that iyI plays the role of time). The

jump in v(x, y), the non-impulsive part of X(x, y), on this characteristic yields information

about the scattering potential V(x, e).

All of this is analogous to the one-dimensional Schur algorithm; note that for this

type of scattering experiment, the non-local nature of V(x, e) does not affect the support

of X(x, y). Note also that since both the excitation and the measurement takes place at the

origin, tais is a reflection-type inverse scattering problem, as opposed to the transmission-

type problem solved by the lattice algorithm below.

This algorithm is called a three-dimensional Schur algorithm for the following reasons:

1. It solve a reflection-type inverse scattering problem;

2. It propagates the residuals v(x, y), whose triangular structure stems from the orthog-

onality principle;

3. It is initialized directly with the random field covariance k(x, y);

4. It performs a spectral factorization (see (4-28) below).

4.4 Three-Dimensional Split Lattice Algorithm. In this section we derive two

forms of the three-dimensional split lattice algorithm. One form is propagated in increasing

Ixi, is initialized directly using the spectral facto - 3f the covariance k(x, y), and requires

an "inner product." The other form is propagated in decreasing lxi, is initialized at large
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IxI using the spectral factor, and does not require an "inner product." This second form,

which has no one-dimensional counterpart, exists because the potential V(x, e) in (4-2) is

non-local.

A. Spectral Factorization

Since 6(x-y)+k(x, y) is the covariance of w(x), and we are now interested in deriving a

lattice algorithm, we consider the spectral factorization of the spectral density M(k, el, e2)

defined in (4-11) into (compare to (2-3))

M(k, e,e 2) = js F(k,el,e3 )F(k, e3 ,e 2)*de3  (4-19)

where F(k, el, e2) is analytic in k in the lower half-plane. This factorization is a Riemann-

Hilbert problem (see (4.1) and (6.9) of [21]); Section 2 of [21] proves, subject to assumptions

about k(x, y) already made, that this problem has a unique solution.

In practice, the spectral factorization (4-19) would never be performed; unless F(k, el, e2 )

is known initially in lieu of k(x, y), there is no point is using the split lattice algorithm. In

this case the split Schur algorithm, initialized using k(x, y), is to be preferred.

B. Recursions

Let ¢(x, k, el) = y-k,,, {(x, y)}, where 4(x, y) is the residual filter defined in (4-13).

Define (x, k, e) using

(xk,el) = IS F(k, el,e 2 )0(x,k, e2 )de2  (4- 20a)

O(x, k, el) = is F-1(k, el, e2)0(x, k, 2 )de2  (4 - 20b)

where F-(k, el, e 2) is the inverse kernel to F(k, el, C2 ).

Let q(x, t, ei) and '(x, t, ei) be the inverse Fourier transforms of O(x, k, ei) and tk(x, k, ei).

We showed previously that O(x, y) satisfies (4- 1), hence 4(x, t, ei) satisfies (4-9). And (4-

20a) and a linearity argument shows that (X, t, e,) also satisfies (4-9). 0

Since F(k, e1 , e 2 ) is the canonical spectral factor of 6(x - y) + k(x, y), the form of (4-9)

(specifically its characteristic at t = -Ix1) implies that ?k(x,t, e,) has the form

,I(X, t, e,) = b(t - e,- X) + U(X, t, e,)l(t + IxI) (4 - 21)
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To see this, note that O(x,t, ej) has support in t on [-Ix1, lx1] (since h(x,t,e) does), and

0 F(k, el, e2 ) is causal in the t domain. Examination of the convolution in t implied by

(4 20a) s.hwc that i(:,.,e.) has supp-t in t on [-xi, oo], yielding (4-21).

Inserting (4-21) into (4-9) and once again equating coefficients of singularities results

in

(0 -2 - )xlu(x,t, ei) = ixl( V(x,e)u(ixe,t, e)x 2 de - ATu(x,t,e,)) (4 - 22a)

= 2d 2(0 (422b)Ixyi,-,) dI Ix(OxO

Equation (4-22a) has the same form as the three-dimensional split Levinson algorithm

(4-9), and it may be propagated in discretized jxi and t in the same way that (4-9) was.

* Equations (4-22) appear in [23] as a proposed fast algorithm for solving inverse scattering

problems with non-local potentials. Compare (4-22b) with (4-2) and (4-10b).

C. Two Three-Dimensional Lattice Algorithms

* Equations (4-22) constitute the recursions for the three-dimensional split lattice algo-

rithm. By propagating them in either increasing or decreasing lxi, we get two different

three-dimensional lattice algorithms. The recursion patterns for updating u(x, t, e,) using

* (4-22) are illustrated in Fig. 5.

The first algorithm proceeds by initializing u(x,t, e,) at the origin x = 0, using (4-

23) below, and propagating (4-22) in increasing lxi and t > -Ixi. Fig. 5 shows that

* V(x, e) is not computed directly by (4-22); an "inner product" combining (4-20b) with the

Radon transform of (4-3) is needed. Because of this, the first algorithm is computationally

inferior to the second algorithm. However, it is analogous to the one-dimensional split

lattice algorithm.

The second algorithm proceeds by initializing u(x, t, ej ) for large jxj, using (4-26)

below, and propagating (4-22) in decreasing jlx and t > -Ix. The advantage of this form

is that V(x, e) ii now computed directly using (4-22) (see Fig. 5); no "inner product" is

needed. This makes it clearly superior for computation.
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D. Initialization

The first form of the algorithm is initialized by setting z = 0 in (4-20a) and using

(4-21):

u(O,t, el) =. F'{(O,k,el)- 11 =.F-{LF(k,el,e2)de2 -1} (4-23)

S0
Note that (4-23) can be viewed as transmission scattering data at the origin.

To initialize the second form of the algorithm we use scattering arguments, following

[131 and [24]. Equation (4-21) shows that k(x, t, ei) consists of a probing impulsive plane

wave .(t - ej - x) and a resulting scattered field u(x,t, e). For IxI > T, we can write this

in the frequency domain as

O(x,k, e2) = f S(k, el,e 2)0(x,-k,-el )del (4-24)

where S(k, e1, e2) is a scattering operator. For large I x, k(x, -k, -e 1 ) represents solely

the probing plane wave by time causality. Equations (4-20) and (4-24) combine to give

[13],[241

S(k, el,e 2 ) = fs F-1(kele3 )F(-k,e3 ,e 2)de3  (4-25)

Inserting (4-25) in (4-24) allows the second algorithm to be initialized for large Ijx using

?P(x, k, e2 ) = jj f F-(k, el,e 3 )F(-k, e3, e2)e-ike1?de3 del, IxI -. 00. (4- 26)

E. Stochastic Interpretation

The various quantities appearing in the above derivations all have important stochastic

interpretations. We briefly summarize them here; for more details see [13]. 4(z, y) is

the residual filter that converts the observation field w(x) into the residual field r(x) =

w(x) - .(zw(y), yI < Iz. This residual field can be decorrelated on the circle IyI = IxI

to give an innovations field. X(z, y) is the residual, or the difference between the left and

right sides of the Wiener-Hopf equation (3-6); for Iyj < IzI X(z, y) = 0 by the orthogonality

principle.
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F-l(k, el, e2 ) is the transfer function of a whitening filter that whitens w(x) to a white

field v(x), while F(k, el, e2 ) is the transfer function of a modelling filter that transforms the

white field v(x) back into w(x). Note that F(k, e1 , e2) and F-1 (k, el, e2) are both causal in

the double Radon transform domain: F(r, e, e2 ) = .F'{F(k, el, e2 )} is causal in r. How-

ever, they are NOT triangular in the spatial domain: F(x, y) = . F'-lr- {F(k, ei, e2)} # 0

for IyI > Ixl. Hence the white field v(x) is not an innovations field; it cannot be obtained

from causal filtering of {w(x)}.

V(x, k, e,) filters v(x) into r(x), as shown by (4-20a): First F(k, el, e2) dewhitens v(x)

to w(x), then O(x, y) rewhitens w(x) to r(x). Also, note that (4-26) is the generalization

of a well-known one-dimensional result [24].

We now show that the three-dimensional split Schur algorithm performs the spectral

factorization (4-19). For large IxI, (4-20b) becomes

O(x, k, e2 ) s F-(k, el, e2)e - ik "del (4-27)

Inserting (4-27) in (4-15) yields

x(x, k, e2) is F*(k, ei, e2)e-kel zdel (4-28)

so that X(x, k, e2 ), propagated by the Schur algorithm, converges to the spectral factor of

the observation field. This is a direct generalization of one-dimensional results [14].

These algorithms are called three-dimensional lattice algorithms for the following rea-

sons:

1. It solve a transmission-type inverse scattering problem;

2. It is initialized directly using the spectral factor F(k, e1 , e2) of the random field co-

variance k(z, y);

3. u(z, t, e,) has the same support t > -z as the one-dimensional lattice algorithm.

5. Computation of the Smoothing Filter g(z, y; T)
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5.1 Computation of g(z, y) from h(x, y). We now specify the third and final

stage of the estimation problem: the determination of the smoothing filter g(x, y; T) from

h(x, y). Recall that g(x, y; T) is the filter for estimating the random field s(x) from the

set of observations {w(y), IyI < T}. Therefore the computation of g(x, y; T) completes the

solution to the original estimation problem. The material of this section is taken from [1],

and generalizes results in [4] and [5].

Recall that g(x, y; T) satisfies the Fredholm integral equation (3-5), while h(z, y) sat-

isfies the Wiener-Hopf integral equation (3-6). Taking the partial derivative with respect

to T of (3-5), and again using the linearity and unicity of solution properties of (3-6) (the

argument is similar to that in Appendix A) results in the differential form

a-g(x, y; T) =-/Lg(x, Te; T)h(Te, y)T 2 de. (5-1) 0

Equation (5-1) allows g(x, y; T) to be computed recursively from h(x, y). The boundary

value g(x, Te; T), the only missing value when (5-1) is propagated recursively in increasing

T for all 0 < Izx, IYI < T, can be computed separately by setting y = Te in (3-5). This

yields 0 sg(x, Te; T) = kT)- j j .~e;Tkr7 T~~ed (5- 2)

which computes g(x, Te; T) from already-computed g(x, z; T), Izi < T and known k(x, y).

5.2 Summary of Entire Procedure. The complete, procedure for computing

g(x, y) from k(x, y) or F(k, el, e 2 ) is as follows:

1. If k(x, y) is known, use it in (4-18) to initialize the split Schur algorithm. If the spectral

factor F(k, el, e2 ) is known, use it in (4-26) to initialize the split lattice algorithm;

2. Propagate the split lattice algorithm in decreasing IxI, computing V(x, e) as the re-

cursion proceeds. Alternatively, propagate the split Schur algorithm in increaing

Izi;
3. Propagate the split Levinson algorithm in increasing IxI, using the potential V(x, e)

computed in step 2;
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4. Compute h(z, y) = 1 -1 h(z,t, ei)}. This corresponds to the prediction filter in the

one-dimensional Levinson algorithm, with the prediction order being the size T of the

sphere of observations;

5. Compute g(x, y) from h(x, y) by propagating (5-1) and (5-2).

6. Conclusion. Three-dimensional split Levinson, Schur, and lattice algorithms

for the three-dimensional random field least-squares estimation problem have been ob-

tained. These algorithms directly solve the three-dimensional Wiener-Hopf integral equa-

0 tion satisfied by the optimal filter, and make no assumptions about the order in which

the three-dimensional data are to be processed. The algorithms are fast since they exploit

the Toeplitz-plus-Hankel structure of the double Radon transform of the covariance of the

observation field w(x), to reduce the amount of computation necessary to solve the integral

equation.

The one-dimensional split algorithms are three-term recurrences that are equivalent
(within a delay) to a discretization of a one-dimensional Schrodinger equation in the time

domain. The three-dimensional algorithms of Section 4 are equivalent to three-dimensional

Schrodinger equations in the time domain, which is why these algorithms are referred to as

three-dimensional split algorithms. The connections between three-dimensional estimation

and inverse scattering problems has been detailed elsewhere [13]; it is worth noting here

that the Wiener-Hopf integral equation (3-6) and the differential form (4-1) both appeared

in an inverse scattering context in [24] and [25].

Some issues that need further research are as follows. The non-local potential V(x, e)

complicates matters enormously, since it has no one-dimensional analogue and introduces

non-causality. It would be very desirable to be able to characterize the set of c variance

functions k(z, y), or spectral factors F(k, el, e2 ), associated with a local potential V(z, e) =

V(x)6(z/tzl - e) This would lead to causal algorithms much more like the ame-dimensional
0 algorithms. Elements of this set would have three degrees of freedom, like the set of
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covariance functions associated with homogeneous random fields. We note here that this

is a major unsolved problem in inverse scattering theory; an estimation viewpoint may well

be more appropriate for solving this problem. Another issue is the numerical performance

of these algorithms.
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Appendix A

Derivation of the Differential Form (4-1)

Applying the operator A. - Ay to both sides of (3-6) and using the three-dimensional

displacement property (3-7) results in

(AX - A,,)h(x, y) + A : h(x,z)k(z, y)dz - J h(zz)Ak(zy)dz = 0 (Al)

where (3-7) has been used again in the last term. Simplifying the middle term and using

Green's identity on the last term gives

(AX - Ay)h(xy) + jl:{ (A, - A,)h(xz)}k(zy)dz = s V(x, e)k(Ixley)IxI 2de (A2)

where V(x, e) is defined by (4-2).

In the integral equation (3-6) let x = Ixie, multiply by IX12 V(X, e), and integrate over

S. This gives

s V(x, e)h(lzle, y)X11 2 de+fjl,5 sV(ze)h(JIJez)k(zy) I 2dedz = S V(zxe)k(Jxe, y)1X 2de.

(A3)

Comparing (A2) and (A3) shows that these integral equations have the same form, and

are therefore the same equation. Since the operator

K: a(t) --+ b(t) = J k(t,s)a(s)ds (A4)
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defined by the covariance kernel k(x, y) is self-adjoint and non-negative definite, the oper-

ator K + I is invertible. This means that the solution of the integral equation (3-6) exists

and is unique. By linearity, therefore, the solutions of the integral equations (A2) and (A3)

must be identical. Equation (4-1) follows.

Appendix B

Derivation of Equation (4-lOb)

Rewrite (4-2) as

V(x,y)8(Izl - Iyl) = -2 + + 1 + h(x,y)6(IlI - lyl). (B1)

Using the property of the Radon transform that

T{(+AfXcz =T 1{) (B2)

a Radon transform of (B1) taking y into t and ej yields

JV(x,y)b(jx - jyI)b(t -ejy)dy =-2 (T-+ +A h(x,t,ej)6(t j- M )

where the 6(IxI - jyl) has been used to convert l/lyl to 1/Ilx and then pull it outside of

the Radon transform with respect to y. Setting t = Ix[ reduces the left side of (B3) to

I[X2 V(X, e1), and quickly yields equation (4-10b).
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Figure Headings

FIG. 1. Lattice filter implementing (2-1) [26].

FIG. 2. Recursion pattern for updating h(x,y) in the three-dimensional Levinson

algorithm of [1].

FIG. 3. Recursion pattern for updating h(x, t, e,) in the three-dimensional split Levin-

son algorithm.

FIG. 4. Recursion pattern for updating v(x, y) in the three-dimensional split Schur

algorithm.

FIG. 5. Recursion pattern for updating u(x, t, e,) in the three-dimensional split lattice

algorithm.
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ABSTRACT

New fast algorithms for solving arbitrary Toeplitz-plus-Hankel systems of equations

are presented. The algorithms are analogues of the split Levinson and Schur algorithms,

although the more general Toeplitz-plus-Hankel structure requires that the algorithms be

based on a four-term recurrence; relations with previous split algorithms are noted. The

algorithms require roughly half as many multiplications as previous fast algorithms for

Toeplitz-plus-Hankel systems.
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I. INTRODUCTION

Toephtz-plus-Hankel systems of equations have many important applications. The

linear prediction problem for nonstationary random processes with Toeplitz-plus-Hankel

covariance functions is one; the recently-developed two-sided autoregressive spectral esti-

mation procedure [1] is another. Toeplitz-plus-Hankel systems also appear in linear-phase

prediction filter design [2), the Hildebrand-Prony spectral line estimation procedure f3],

and PADE approximation to the cosine series expansion of an even function [4]. The

continuous-time counterpart (an integral equation with a Toeplitz-plus-Hankel kernel) ap-

pears in atmospheric scattering [5] and rarefied gas dynamics [6]. 0

Fast algorithms for solving Toeplitz-plus-Hankel systems have appeared in [7], in which

the Toeplitz-plus-Hankel system is reformulated as a block-Toeplitz system, and [81, in

which a set of coupled recursions is propagated in increasing predictor order ([9] is a •

continuous-time version of [8]). The new algorithms of this paper can be viewed as split

versions of those of [8], analogous to the split Levinson and Schur algorithms of [10] being

split versions of the classical Levinson and Schur algorithms. Alternately, they may be

viewed as analogues of the split algorithms of [101, applied not to symmetric Toeplitz

systems, but to arbitrary Toeplitz-plus-Hanikel systems.

The heart of the new algorithms is a four-term recurrence that generalizes the three-

term recurrences of [10] to Toeplitz-plus-Hankel matrices. This recurrence requires two

multiplications per update, which is half the number required by the algorithms of [7]-[9].

This is analogous to the 50% savings in multiplications for the split algorithms of [10] over

the classical Levinson and Schur algorithms. To save space we refer to the new algorithms 0

as split algorithms, rather than analogues of split algorithms, in the sequel.

In Section II the basic four-term recurrence for the new split Levinson algorithm is

derived. In Section III the computation of generalized potentials using an "inner product" 0

expression is shown; this and the four-term recurrence constitute the new split Levinson

algorithm. In Section IV a new split Schur algorithm is derived; this avoids the "inner

product" expression required by the split Levinson algorithm. Section V shows how the

new split algorithms are used to solve arbitrary Toeplitz-plus-Hankel systems. Section
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VI discusses how the new algorithms are related to previous split algorithms in special

cases. Section VII concludes by summarizing and noting current research in progress on

multi-dimensional versions of these algorithms.

II. DERIVATION OF THE FOUR-TERM RECURRENCE

A. The Basic Problem

In Sections II-IV we consider the solution of the Toeplitz-plus-Hankel system

1 + k ,_ ... ki,- 1 0 S-i,-i si,-i -

• -i-i1 hi,-(i-1) 0 0 |

k-i ''0  ko " " " (1)
•""h-i'i- 1 hi'i- 1 00

k-ii ''.. I+ ki,i L 0 1 S-i,i Si,i

where the S±i,±i are defined from the {ki,j} and {hi,j} in (15) below, and the ijth element

of the system matrix has the form

ki, = ki(i - j) + k2 (i + j) (2)

for arbitrary functions kl(.) and k2 (.). Note in particular that the system matrix need

be neither symmetric nor persymmetric; the only requirement is that all of the central

submatrices be nonsingular.

Updating (1) from i to i + 1 increases the size of the matrix by two; this requires

two updates, and r--Cuireb ki/ 2 ,,/ 2 Le defined ai i6alf-integer values (i/2,j/2). If i/2 + j/2

is not an integer, let ki/2,,/ 2 = 0; if i/2 + j/2 is an integer, assign ki/2,1 / 2 such that the
matrix with ijth coordinate ki/23 / 2 is Toeplitz-plus-Hankel. If kij is specified by the form

(2), this can be done easily by inserting the half-integer values in the functions kl(.) and

k2(.) (note that the arguments will always be integers); if only the matrix (1) is given, see

Section V. -

Omitting the first and last rows of (1) allows it to be rewritten as

0 = ki,+hi,j+ hi,nk nd,; 0 = k-i,+h-ij+ h-i,,knj, -- i-) < j < i-1.
n=--i)

(3)
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Now define the interpolated system of (3) as

i-1/2

0 = ki+ 1 /2,j+1 /2 + hi+1/2,j+1/2" E hi+1/2,nkn,j+1l 2  - (i - 1) _ _< i - 1. (4)
n=-(i-1/2)

and similarly for -i - 1/2. The interpolated systems for various orders are auxiliary systems

of Toeplitz-plus-Hankel systems that are solved along with (3) by the algorithms to follow.

This artifice is necessary in order to obtain split algorithms solving nested systems (see

Section VI).

B. Derivation of Four- Term Recurrence for hij

To make the derivation easier to follow, we consider only positive i. Define the discrete

wave operator A of a function fi,j as

Afij = fi+1/2,j + fi-/l2,j - fi,j+1/2 - f 1,-1/2 (5)

A is the discrete version of the continuous operator (L92 - e2). Note that the Toeplitz-

plus-Hankel structure (2) is equivalent to 0

Akij = 0; for integer i + j. (6)

Apply the operator A to (3) by writing (3) with i replaced with i ± 1/2, and then j 0

replaced with j ± 1/2, and then adding and subtracting (4) appropriately. Using (6) and

the definition (5) gives

i-3/2

0 = Ahij E hi,nkn,j + hi+ 1/2,i-1/2ki-1/2,j + hi+l/2,-(i-1/2)k-(i-1/2),j
n=-(i-3/2)

i-3/2- E (h,,+ 1 2(kn+ipj+1 /2 - knj) + h,,. 1/ 2(k...i 2,j-ip -

n=-(i-3/2)

-hj,j-jkj-,j-1l2 -- hi,-(i-)k-(i-),j+1/2 - (i - 3/2) _< j _< i - 3/2 (7)

The first sum in (7) has the desired form for the argument to follow; the second sum and

the two extra terms following each sum are all corrections to the first sum. Note that (7)
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only holds for -(i - 3/2) _< j _ i - 3/2, since in deriving (7) we used (4) with i replaced

with i - 1/2.

The second sum in (7) can be simplified using (6). Changing the summation variable

from n to n + 1 in the second term shows that

i-3/2 -(h,,+ 1 /2(k.+ 1 /2,1 +1 /2 - k.,,) + - k.,))

n=-(i-3/2)

i-3/2

n=-(i-1/2)

(8)
The sum in (8) vanishes by (6). Substituting (8) into (7) and collecting the extra terms

on the left side results in

i-3/2

0 = Viki- 1 /2 j + V 2 k_(jl/ 2 ),j + Ahi,, + , Ahi,knj (9)
n=-(i-3/2)

where we have defined the potential (see [11] for a discussion of this term)

Vi = hi+1/ 2 ,i-/ 2 - hii- V 2 = hi+l/ 2 ,_(i.l/2 ) - hi,_(ij). (10)

* Equation (9) has the same form as (4), with a different left side. To see this, write (4)

with i + 1/2 replaced with i - 1/2 and -(i - 1/2), multiply by Vj' and V 2 , respectively,

and add. This gives

i-3/2

V ki-1/ 2 J+V2k-(i-l/ 2)J = V1 hi-j/2jrV2h-(-. 1/2)J + E (vi+hi-1/2,n + V2h-(j-j/ 2),) knj
n=-(i-3/2)

(11)

C. Bajic Four-Term Recurrence for hij

Since kij is nonsingular by assumption, the solution Vi'hiI/2,j + V 2h_(ij/2)j to

(11) must be unique. Comparing (10) and (11), this implies that

Ahij= Vi hi-]12,j+-Vi2h-(i-1/2)j -(i - 3/2) < i < i - 3/2 (12)



which can be written as

hi+1/2, = hi,j+l/2 + hij- 1/ 2 + (Vi1 - 1)hi-1/2 1+ ih-(i-1/2),. -(i-3/2) _j <_ i-3/2

(13)

Equation (13) is the four-term recurrence that is the heart of the new algorithms. It

is analogous to the three-term recurrence on which the split algorithms of [10] are based,

although there are some differences (see Section VI). Although we have treated i as positive

throughout this derivation, (13) also holds for negative i and -(ij - 3/2) < i 5 jil - 3/2.

III. NEW SPLIT LEVINSON ALGORITHM

The four-term recurrence (13) can be propagated in increasing lil and -(li - 3/2) _

j < il - 3/2. Note that for i an integer/half-integer, j will take half-integer/integer values,

respectively. However, since (13) does not hold for j = ±(i - 1), we must update hi,±(i-,)

using (10), and similarly for h-.,±(.- 1). Also, both (10) and (13) require Vil and V/2 to

be supplied separately, computed from ki,; note that (10) cannot be used to compute Vi

and Vi2, since (10) is needed to update h±j,±(jj). We now show how V and V12 can be

computed from previously computed hij and kij. 0

A. Computation of Vi and I 2

Setting j = i - 1 in (3) and (4) gives

i-1/2 -

hi+1/2,i-1/2 = -ki+1/2,i-1/2- E hj+j[2,nkn,i-l[2 ; hii-1 = -ki,i-- hi,nkn,i-1.

n=-(i-/2)-i)

(14)

The second equation requires only k,j (known) and hij (from the previous recursion);

however, the first requires hi+1/2j, which has not yet been computed. Substituting (13)

into the first equation and a considerable amount of algebra results in the following. Define

the Schur variables 0

Sij = 6ij + kij + hi,k, j = ±i (15)
n=-(i-1)

where 6ij = 1 if i = j and is zero otherwise. Note that 5,j can be computed from known

6



kij and hij. Then it may be shown that

ir
Si-1/2,-(i-1/2) S-(i-1/2),-(i-1/2) V?

]  
Si-1/2,-(i-1/2 ) - Si,-iI

The existence of a unique solution to (16) is proved in Section V below. The closed-form

solution of (16) is

V+ -(-i 2,<-/)S-i2i 2-l~)-S(-/2,-/(i 2-i 2 Si,-i)) /DET

(17a)

i (Si-/2,i-1/2(Si-1/2,-(i-/2) - S,- Si-i/,-(i-/2)(Si-/2 - S,))/DET

(17b)
DET = 8i-1/2,i-/2-S-(i-1/2),-(i-1/2) - Si-112,-(i-112)8-(i-112),i-1/2. (17c)

B. New Split Levinson Algorithm

Initialization h±,,0 = -k+ 1 ,o/(1 + ko,o) (18)

Computation of V, Vi: Compute Si,+i from kjj (known) and hi, (from previous

recursion) using (15). Compute V and V 2 from Si,±i and - using (17).

Update hij: Compute h±(i+l/2),±(i-1/2 ) using (from (10))

hi+1]2,i-1]2 = hi,-. 1 + Vl; hi+/2,-(i-1/2) = hi,_(i-,) + Vi2  (19a)

h-(i+1]2),i-l[2 -" h-i,i-1 + vl-i h_(i+l]2),_(i-1[2) =h-i,_(i-l) + V~i.  (19b)

Compute hi+1 / 2,j, -(i - 3/2) < j < (i - 3/2) using (13). Compute h-(i+i),j by writing

(12) as

h-(i+1/2),j = h-i,j+1/2 + h-ij-1/2 + (Vii - 1)h-(j-j/ 2 ),j + V2-hi-1/2,j (20)

At this point the recursion is complete. The computed hij for integer/ half-integer

i and j solve the original system (3)/interpolated system (4), respectively; note that two

recursions are needed to increase the size of the system (3) by two (i.e., update i to i + 1).

7



The heart of the algorithm is the four-term recurrence (13), which requires 2i - 3 mul-

tiplications to update hi,j. The fast algorithms of [7]-[9] require roughly 4i mulliplications

to update hij. There is a redundancy in the computations of [7]-[91 similar to that in the

classical Levinson and Schur algorithms; the savings of roughly 50% is analogous to the

savings in the split Levinson and Schur algorithms of [101 over the classical algorithms.

This algorithm differs from the split Levinson algorithm of [101 in two other respects. 9
First, the non-symmetric Toeplitz-plus-Hankel system matrix requires four sequences V*'i

and V,i of potentials and the four-term recurrence (13). The symmetric Toeplitz system

matrix solved by the split Levinson algorithm of [10 requires only one sequence of poten-

tials and a three-term recurrence. Second, the split Levinson algorithm of [10] propagates

not hij but hi,, + hi,-i; this is more efficient for symmetric Toeplitz matrices, but requires

recovery of hij from hi,, + hi,_. at termination.

IV. NEW SPLIT SCHUR ALGORITHM

The "inner product" (15) computation requires i multiplications; since it is not paral-

lelizable, it is a computational bottleneck, just as in the classical Levinson algorithm. For

this reason, we now derive a new split Schur-type algorithm for arbitrary Toeplitz-plus-

Hankel matrices. This algorithm can be propagated in parallel with the split Levinson

algorithm derived above; this avoids the computational bottleneck (15). The same idea

was used for the classical Schur and Levinson algorithms in [12].

The first step is to show that the forward prediction error filter satisfies the four-term

recurrence (13). From this, we show that the Sij defined in (15) (now for all j _ i) also

satisfy (13). This implies that (13), initialized using kij, can be used to compute Vi and

V,2 quickly.

A. Four-Term Recurrence for S,i

Define ,, by

Oij = 6wj + hi,j (21)

Clearly Oi satisfies (13) for -(i - 3/2) _< j _< i - 3/2 since Oij = hij for these values.

At j = ±(i - 1/2) or ±(i + 1/2) 4O,, satisfies (13), since this reduces to (10). And for

8



Ilj I> i + 3/2 (13) reduces to 0 = 0. Hence (13) with hij replaced with ¢ij is true for all i

an integer/half-integer and j a half-integer/integer:

Oi+1/2,j = ,ij+1/2 + Oi,j- 1 / 2 + (Vi 1 - 1)0i-1/2,j + Vi2O_(i 1/2 )j (22)

Next, extend the definition Si,, in (15) to all integers and half-integers i and j such

that i + j is an integer:

i-1 i-1/2

Sjj = 6i,j+ki,j+ E hi,,k,,j; Si+/2,j+l/2 = 6i,j+ki+112 ,j+ 112+ hi+1/2 ,.k,j+1/2
n----(i-1) n=--(i-1/2)

(23)

From (3) and (4) S,,j = 0 for -- (i - 1) _< j < i - 1. Substituting (2) and (21) in (23) gives

Si,j = 1'(6i,n + hi,n)(bn, + kn,j) = E ¢i,n(6.,j + ki(j - n) + k2 (j + n))

= ij + €ij * k1(j) + j,,-j * k2 (j) (24)

where * denotes a convolution in j.

Since (22) is linear in functions of j, it may be convolved with k1(j). Note that (22)

still holds if j is replaced with -j, and convolve this with k2(j). Adding (22) to the

convolution of (22) with k1(j) and the convolution of the time-reversal of (22) with k2(j)

and using (24) shows that

Si+1l2,j = Si,+112 + Sii-112 + (Vi1 - 1)Si-1/sj + Vi2S-(i-l/2)j (25)

so that S,,, also satisfies the four-term recurrence (13). Equation (25) can also be derived

by taking the z-transform in j of (22), noting that the result is unaffected if z is replaced

with 1/z, multiplying by the z-transforms of ki(j) and k2(j), and adding.

B. New Split Schur Algorithm

Initialization : So,, = koj; S+1/2,j+1/2 = k-112j+12 (26)

Note k0 ,,n and k1/2,n+1 /2 for integer m and half-integer n + 1/2 uniquely determines kj,

for all iJ, i + an integer, using (6).
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Computation of Vil , V 2 : Compute l and V7 from Sj,+i and Si-1/2,±(i-/2) using

(17). Similar equations are used to compute V1. and V 2 . 0

Update S jjj Il > i using (25).

At this point the recursion is complete. The split Schur algorithm can be run in

parallel with the split Levinson algorithm, supplying the potentials V1 jL and V±i while

bypassing the "inner product" computation (15) ((17) is still necessary), as suggested in 0

[12] for the classical algorithms.

If the original system (3) is a discretization of an integral equation, then Si < 1

and the t5,j in (15) dominates the other terms if i = j. In this case the solution to (16) is 0

simply

Vi1 = S.i,..- - S,,,; V 2 = Si-1,-(i) - Si,-i (27)

which replaces the more complicated (17). 0

V. SOLUTION OF ARBITRARY TOEPLITZ-PLUS-HANKEL SYSTEMS

The split algorithms above solve the systems (3) and (4); hence they also solve (1)

with S±i,i defined as in (15). We now consider the general problem 0

1 + k,,, ... kJ, [ X- b(8• • • [ = •(28)

k-i,i ... 1+ki,i i bi 0

where the right side is now arbitrary.

Define {cj, -i :_ J < i} recursively as follows. Let c±j be the solution to the 2 x 2

system _

=-,- sj-I . (29)
S-j,j Sj,j cI j n=-0-1) .j

Then the solution to (28) is given by

Xi = Cnn,j, -i_<j i (30)
n=-i

where Oij is defined in (21) and hij is defined to be zero for [i1 < Iji. These equations

may be derived easily by taking linear combinations (weighted by the c.' of the columns

10
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of (1) for increasing i and equating to (28). Note how this relies on the split algorithms

solving nested systems of equations as i increases.

We note here that the 2 x 2 systems (16) and (29) have unique solutions if the central

submatrices of the system matrix (1) are nonsingular. To see this, suppose that the 2 x 2

system matrix in (16) an-It (29) is singular. Then the second column is a multiple (say

m) of the first column, and the column vector [1,... , (h-ij - nhi,), , -m] T solves the

homogeneous system associated with (1), which is impossible as long as the system matrix

in (1) is nonsingular.

If the system matrix is specified by functions k1(-) and k2(.) as in (2) (and [7]), then

the initialization (26) for the split Schur algorithm is accomplished using (2) directly (note

the arguments are always integers). However, if the matrix (1) is given directly, then

k± 1 / 2,j+1 / 2 must be interpolated from the given values k0,j and k±,,1. From (6), these can

be recursively computed as needed in the split Schur algorithm using

k±x/2,j+1/2 = koj + k±1,j - k± 1 / 2 ,j-1 / 2 ; k±1/ 2,1/ 2 = k±1 / 2,-1/ 2 = (1 + k0 ,0 + k±1,o)/2

(31)

VI. RELATION WITH PREVIOUS SPLIT ALGORITHMS

A. Relation to the Split Algorithms of [10]

To show how the new algorithms reduce to the split algorithms of [10], we first consider

the class of Toeplitz-plus-Hankel matrices such that ki," = k-i,-j. In terms of (2) both

kI (-) and k2(.) are even functions; note that covariance functions of time-reversible random

processes have this property. The set of centrosymmetric matrices (matrices that are both

persymmetric kij = k-j,-i and symmetric kij = ki,,) is a subset of this class. From (3)

hi.j = h-j,, from (15) S,, = S-i,-, and from (17) V1' = V_2, and V 2 = Vi,. Hence the

computations for i < 0 can all be dispensed with.

We can go further. Defining

ai, = hi,, + hj,-i; eij = Sij + Sj,-i; V, = V1i + V 2  (32)

replacing j with -j in (12) and (25), and adding to (12) and (25) respectively results in

Aai,j = Viai-jj; Aeij = Viei-lj. (33)
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Adding (16a) and (16b) allows V, to be computed from eij, by

V = (ei-l'i-i - ei'X)ei-i'i-i. (34) 9

From (3) and (32) ai,, is the solution to

:-1

kij + ki,- = aij + ai,nkn,j (35) •

The solution to (35) can be recursively computed using the three-term recurrences (33),

along with (34). These eruations have virtually the same form as the split algorithms of 0

[10], even though kij is not Toeplitz.

To see what is happening here, use (2) to rewrite the left side of (35) as

kij + ki,_ = k(i - j) + k2(i + j) + ki(i + j) + k 2(i - j) = k(i - j) + k(i + j) (36) 0

where k(i) = ki(i) + k2(i). From (32) aij = aj,-., and the right side of (35) can be

rewritten using this and (36), yielding

i-1

k(i - j) + k(i + j) = aij + Z ai,n(k(n - j) + k(n + j)). (37)
n=O

Equation (37) is in fact the symmetric Toeplitz system solved by the split algorithms of [10],

after shifting from a one-sided to a two-sided interval. This shows how these algorithms

are related to the algorithms of this paper. Note that the split algorithms of [10) propagate

aij, not hij; hi, must be computed from aij at the end.

If the system matrix (1) is merely symmetric, a more subtle simplification is possible. 0

In this case, the block-Toeplitz reformulation of [7) becomes a centrosymmetric block-

Toeplitz problem, and the results of Section VI of [13] can be used to derive a three-term

matrix recurrence similar in form to (13) and (20) combined, except that V2, V 2 .

However, tnis recurrence does not propagate the h±ij directly, but weighted combinations

of them, and it requires as many multiplications as the algorithm of this paper (which

also works for nonsymmetric matrices). It is more efficient in that it requires only three

functions, instead of four, to characterize the inverse of the system matrix (1); this is

12
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reasonable since symmetry requires k, (-) in (2) to be an even function, removing a degree

of freedom.

B. An Alternative Algorithm for Non-Nested Matrices

If the problem (1) is modified so that the system matrices of different orders are no

longer nested, the algorithm takes a slightly different form. Consider the system

ki, [1 -. kn+ 2,1 in. n."(3

• . ." " • "(38)

k,,,+2 ""k,+,,+2 -L0 1 1 S,,n+, Tn+

where ki j is now defined by

kij k1(i - j) + k2 (i+j - (n + 3)) (39)

and S' and T" are defined as (compare to (15))

n n

t= Z j kj.,,i+,; Tn = >j ykn+-2-j,i+l; X0 = = 1. (40)
j=O j=O

Defining the polynomials

nl n 00 00

X~z)= r>; n~)= Yz' R(z)=Zki j; H(z)= k2(j)z' (41)
j=0 j=0 -00 -00

the system (38) can be written in polynomial form as

R(1/z)X,(z) + z"+'H(z)X,(i/z) = ... + S(2 + ,+) + ... a)

R(l/z)z"+'Y,(l/z) + H(z)Yn(z) = ... + To +TnZn1 + (42b)

where the ellipses indicate terms of lower and higher order in Laurent series.

Knowing the form of the four-term recurrence, writing (42) for n, n + 1, and n - 1,

and adding and subtracting appropriately gives

R(1/z) (Xn+I(z) - (z + 1)Xn(z) - zVnlXn._(z)- zV2Z"Yn_](1/z))
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+H(z) (z"+ 2X.+ 1(llz) - z"+2(1/z + 1)X.(1z) - z"+ 2 (l/z)VIX, . _ 1(l/z))

Sn.+2 Z + -- (43)

provided that Vn and Vn2 are chosen such that (compare to (16))

son-1 Tn"- 1  v2] = [-_Son+
[S 0 ]- [,~ LVnZ [ ] (44)

As long as the system matrix (38) is invertible, the expression in parentheses in (43) must

be zero. Equations (43) and (44) define a four-term recurrence for the solutions to (38).

Proceeding as before, analogues of split Levinson and Schur algorithms may be derived.

This algorithm avoids the interpolated system and half-integer recursions of the pre-

vious algorithms. However, it does not save any computation. More importantly, (38) and

(39) do not define a nested set of system matrices in increasing order n: the ijth element

of the system matrix changes with order n (see (39)). Hence this algorithm is not useful

for updating problems, in which the size of a Toeplitz-plus-Hankel system is enlarged by

augmenting the system matrix around its edges; this type of problem is common in linear

prediction. The solution of an arbitrary Toeplitz-plus-Hankel system also becomes more

complex than (29)-(30).

A nested system of equations in increasing n can be defined from (38) and (39) by

making the substitution i' = i - (n + 3)/2, j' = j - (n + 3)/2. This alters (38) and (39)

to (1) and (2), respectively; however, for n even it requires that the interpolated system

(4) be defined. This leads back to the previous algorithm.

Although the derivation (43) is simpler than that of Section II, it requires prior knowl-

edge of the form of the recurrence. The derivation of Section II derives the form of the

recurrence directly, and shows that the Toeplitz-plus-Hankel form, rather than the purely

Toeplitz form, is fundamental to the split-like recurrences. It also shows that matrices

with structure defined implicitly (as in (6)), rather than explicitly (as in (39)), can have

fast algorithms easily derived for them. In particular, this has led to fast algorithms for

block Toeplitz-plus-Hankel systems of equations [14].

VII. CONCLUSION
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New fast algorithms have been derived for solving arbitrary Toeplitz-plus-Hankel sys-

tems of equations. The new algorithms can be viewed as analogues of the split Levinson

and Schur algorithms of [10], but applicable to a more general problem. The split Levinson

algorithm recursively computes the solution using a four-term recurrence, but requires a

non-parallelizable computation (15) to compute the potentials. The split Schur algorithm

computes the potentials using a similar four-term recurrence; using it in parallel with the

split Levinson algorithm obviates (15) and allows the same processor architecture to be

used for both algorithms.

The algorithms presented in this paper have two-dimensional analogues applicable

to the linear prediction problem for a two-dimensional random field [141,[15]. Unresolved

issues include the numerical stability of these algorithms, optimal processor architectures

for implementation, and generalization to matrices with singular submatrices.
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Abstract

New generalized split Levinson and Schur algorithms for the two-dimensional linear least-squares
prediction problem on a polar raster are derived. The algorithms compute the prediction filter for
estimating a random field at the edge of a disk, from noisy observations inside the disk. The covariance
function of the random field is assumed to have a Toeplitz-plus-Hankel structure for both its radial
part and its transverse (angular) part. This assumption is valid for some types of random fields, such
as isotropic random fiel-s. The algorithms generalize the split Levinson and Schur algorithms in two
ways: (1) to two dimensions; and (2) to Toeplitz-plus-Hankel covariances.
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I INTRODUCTION

The problem of computing linear least-squares estimates of two-dimensional random fields from noisy

observations has many applications in image processing. In particular, the two-dimensional discrete

linear prediction problem is a useful formulation of problems in image smoothing and coding [1]. If the

random field: (1) is defined on a rectangular lattice of points; (2) is stationary; and (3) has quarter-plane

or asymmetric half-plane casuality, then the two-dimensional linear prediction problem may be solved

using the multichannel Levinson algorithm [2, 3] (modifications of these conditions are also possible).

By exploiting the Toeplitz-block-Toeplitz structure of the covariance function of the stationary random

field, this algorithm allows the linear prediction filters to be computed recursively using significantly

fewer computations than direct solution of the two-dimensional discrete Wiener-Hopf equations. The

multichannel Schur algorithm computes the reflection coefficient matrices from the covariance function;

propagating it in parallel with the Levinson algorithm saves even more computation.

In tomographic imaging problems solved by filtered back-projection [4], and in spotlight synthetic

aperture radar [5], data are collected on a polar raster of points, rather than on a rectangular lattice.

Although such data can be interpolated onto a rectangular lattice, this is necessarily inexact; it also affects

the covariance function. For example, the covariance of an isotropic random field on a rectangular lattice

is a Toeplitz function of the ordinates and abcissae, while on a polar raster it is a Toeplitz-plus-Hankel

function of the radii. For smoothing noisy images and performing image coding for images defined on a

polar raster, it is clearly desirable to develop analogues of the multichannel Levinson and Schur algorithms

applicable to discrete random fields defined on a polar raster.

This paper develops these analogues. They generalize previous results in three ways: (1) the random

field is defined on a polar raster; (2) the random field is not required to be stationary; rather, its covariance

must have Toeplitz-plus-Hankel structure in both the radial and transverse directions (some important

cases of such random fields are noted in Section IV); and (3) the quarter-plane or asymmetric half plane

causality assumption is replaced by a more natural causality defined in the radial direction only. The
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prediction filters estimate the random field at a given point using observations from all points of smaller

radius.

Three other features are worth noting here. First, the algorithms are generalized three-term recur-

rences, similar in structure to the split algorithms [6, 7]. The one-dimensional split algorithm recursions

require only half as many multiplications as the two-component lattice recursions of the Levinson and

Schur algorithms. Our two-dimensional algorithms are similarly computationally efficient, which is im-

portant in two-dimensional signal processing. Second, the smoothing filters for estimating the random

field from observations at points of smaller and greater radii can be easily computed [8] from the prediction

filters using a discrete multi-dimensional generalization of the application of the Beliman-Siegert-Krein

identity to the one-dimensional smoothing problem in [9]. Indeed, the new two-dimensional algorithms

of this paper are applied to arbitrary Toeplitz-plus-Hankel-block-Toeplitz-plus-Hankel systems in Section

V.

Finally, we note that similar ideas have been applied to continuous-parameter isotropic [10] and

homogeneous [11] random fields, and to random fields with more general Toeplitz-plus-Hankel structure in

[12] and [13]; this paper can be viewed as a discrete version of the results of [13]. Although the continuous

algorithm can always be discretized, an inherently discrete algorithm can be expected to perform better

on a computer; there are minor yet significant differences between the results of this paper and the

continuous results of [13] (see Section IV). Also, in some problems the data are sampled, or only taken at

discrete points. These facts motivate us to develop a discrete counterpart of the continuous algorithms.

We also note that the one-dimensional version of this algorithm has been presented in [14], and that a

summary of the results of this paper was presented in [15].

This paper is organized as follows. In Section II, the two-dimensional analogue of the discrete split

Levinson recurrence for the linear prediction problem on a polar raster is derived. The derivation is based

on the assumption that both the radial part and the transverse part of the covariance have Toeplitz-plus-

Hankel structure. Section III derives a corresponding Schur algorithm, to be propagated in parallel with
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the Levinson algorithm. Some examples of random fields with covariances having Toeplitz-plus-Hankel

structure are discussed in Section IV, and comparison with the results of [13] are made. In Section V, the

computational complexity of the proposed algorithm is evaluated, and compared with other algorithms.

The solution to a general Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system of equations is also

developed. Section VI concludes with a summary.

II DERIVATION OF THE LEVINSON-LIKE RECURRENCE

A. Basic Problem 0

The problem considered is as follows. Given noisy observations {yi,N} of a zero-mean real-valued

discrete random field {zi,N} at the points (i, N) of a polar raster on a disk, compute the linear least-

squares predictions of X,,N for all points on the edge of the disk using all the data inside the disk. Here

i is an integer radius from the origin, and N is the integer index of the argument (angle); if there are M

points distributed on the circle of any radius, then (i, N) is the point at radius i and angle 27rN/M. 0

The observations {Yi.N} are related to the field {Xi,N} by Yi,N = Xi,N + Vi,N, where {Vi,N} is a zero-

mean discrete white noise field with unit power, and {xi,N} and {vi,N} are uncorrelated (white noise with

arbitrary power a 2 can be easily handled by scaling). The covariance of {xi,N} is 9

K(i, N;j, N2) _ E[xi,N, xj,N2] (1)

which is assumed to be a non-negative definite function with Toeplitz-plus-Hankel structure in both

arguments (this is defined precisely in (13) and (14) below). Although an actual covariance would also

be symmetric function, symmetry in (1) is not required by the algorithms to follow; this permits their

application to general Toeplitz-plus-Hankel block Toeplitz-plus-Hankel systems in Section V.

The estimates of Xi,N at the edge of the disk are computed from the observations {Yi,N} using

S-I M

= Z E h(i,Nj;j,N2 )j,N (2)
j=O N 2 =l

By the orthogonality principle of linear prediction, the optimal prediction filters h(', NI;j, N 2) are
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computed from the covariance K(i, Nj; j, N2 ) by solving the two-dimensional discrete Wiener-Hopf equa-

tion
i-1 M

K(i,NI:j, N 2 ) = h(i,NI;j, N 2 ) + 1 1 h(i, NI;n, N 3 )K(n, N 3 ;j,N2 ) (3)
n=O N 3 =1

for all0<j <:i-1 and 1 <N 1,N 2 <AM.

The goal of this paper is to derive fast algorithms for solving (3) for h(i, N1 ; j, N2 ) when K(i, NI: j, N2 )

has Toeplitz-plus-Hankel block Toeplitz-plus-Hankel structure.

For convenience in the derivation, we solve not (3) but the system of equations

i-i M

K(i, N1;j, N2 ) = h(i, NI;j, N 2 )+ 1 E h(i,Ni;n,N3 )K(n,N3 ;j,N2) (4)
n=-(i-1) N 3 =1

for all -(i - 1) < j < i - 1 and 1 < N1, N2 _ M. This modified system (4) is motivated by noting that

the continuous-parameter two-dimensi, Lal Wiener-Hopf integral equation

h'(x,y) = h(z,Y)+ h(x,z)K(z,y)dz

= h(x,y) + 1j .(x.zO)K(IzO,y)zjdOdjzt, x,y,z E R 2 ,Jyj < Ixj (5)
1O JO

discretizes into

i-1 M

K'(i,N;j, N 2 ) = h'(i, N;j, N 2 ) + E E h'(i, NI;n, N 3)K'(n, N 3;j, N 2 )n (6)
n=O N3 =1

where the radial weighting factor n in (6) reflects Iz[ in (5). If we let

h(i, N 1;j, N 2 ) = ih'(,N;j, N2) =-- 2 h'(i, NI;-j, N 2 +g/2) (7)

K(i, NI;j, N2) = 2K'( N ;j, N2 ) = -K'(iNI; -j, N2 + M/2) (8)
2 '2

then the sum in (4) is simply double the sum in (6), so that if h(,,NI;j, N2) and K(i, NI;j, N 2) satisfy

(4), then h'(i, NI; j, N2 ) and K'(i, N1 ; j, N 2) satisfy (6). Note that the second equalities in (7) and (8) will

hold on a polar raster, but are not required in (4). For convenience we continue to refer to K(i, NI;j, N2)

in (4) as the covariance function.

Similarly to the approach used in [14], we decompose the update procedure into two steps by intro-

ducing an interpolated (auxiliary) system. As shown in Fig. 1, between every pair of points in the same
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radial direction, we insert an auxiliary point. The covariance function K(i, Ni;j, N2 ) is interpolated at

these auxiliary points such that the Toeplitz-plus-Hankel structure (see (13),(14)) is maintained. Then

the interpolated system is defined as

1 1 i-I M (
j+(i-V2;J + , " 2) = h(i, N1;j + V2)+ E E h(i, NI;n, N3)A(n, N;j+-,N2) (9)

n=-(i-1) N3 =1

for interpolation at half-integer values of j and

~(j + Ni 1j(+ ) N 2 )- h(I + N.;j(+I),N2)+ E M h(i+-,N;nN3)K(nN 3 ;j(+)N 2)
2 2 2  ~n=-(i-1) N3=1 2 2

(10)

for interpolation at half-integer values of i. Note that in (10) j can also take -n half-integer values.

B. Derivation of the Basic Levin'on-Like Recurrence

Define the discrete wave operators A, and AO by

1 NN 2)-f(i,NJ N 2 ) (11)

IN;j, N2)+ f(i -- , + 1;j, N 2 )+ f(i 2 )(12)
2 ¥+;,N)fi 2'

- fi Ni;j, N 2 + 1) - f(i - j, 1;jN 2 -1) (12)

where A, and AO cdn be regarded as discrete versions of the continuous operators (-9 - a) and

- $) for the radial part and transverse part, respectively. In (12) N1 ± 1 and N2 ± 1 are computed

mod M, reflecting their definition as angular variables on a polar raster.

We assume that the cv-,ariance function has Toeplitz-plus-Hankel block Toeplitz-plus-Ilankel struc-

ture. defined by

AK(i,Nj;j,N2) = 0 (13) *
AeK(i,Nl;jN 2) = 0 (14)

Applying the Laplacian operator A = A, + A0 to the equation (4), we have after some algebra

2- M

AK(iNV1 j, N 2) = 0 = Ah(i, N1;j, N 2 )+ E E Ah(i,Nl;n,N3 )K(n,N 3;j, N 2 )

n,-1 )N3=1



M 1 Nli-1 1+ N [h(i + 1, - -, .3)- h(i, NI;i - 1,N 3 )IK(i - 1 N3 ;j, N2)
N3 =2

Al1 1 1

+ Z [h(i + 2, N; -(i - ), N3)- h(i, NI; -(i - 1), N 3)]K(-(i - 2-) N3;J, N 2)
N3 =1

i-I M

+ E Z h(iN1;nN 3 )ArK(nN 3 ;jN 2 )
n=-(t-i) N3 =1

i-I
2 M1

+ E E h(I- -,N;n, N3 ) A0K(n, N3 ;j, N 2 ) (15)
n=i-2-)N3=2

The algebra required to derive (15) is a generalization of the algebra in [14]; the major difference is that

there are nc "end effect" terms in the sums over N3 when A9 applied. This is true since h(i, NI;j, N2 ) is

periodic with period V in N1 and N 2 , since these indices represent angles on the polar raster.

Using (13) and (14) to note that the last two terms in (15) are zero, we note that (15) has the same

form as the following linear combination:

Z[V'+(NV1 Nr)K(i2 N 3 ; .N, VK7'N'I-V 3 )K(-(Z N- )

M A

Al 1

+ V[U+ ( A1 V) h )(i - ,, 43 )j. + + A( 3  - 1 - N3; J' N4

NIN_1(1 V:I N2 ~,N;Z 1, 2)]j (17)]

2 2
N I = 1 z-- 1 )N (18)

Z Z E [V,/:( 1 .1 N'3 )h (i - - "\" ' 3
"n '\ *

4 ) + I:(VV,:')h((zi 1.'37'T)

r -(?--) '4 -1 ,*\A=1

× K(n.. '4,j.N.;)1)

where we have dpfined the potentials

1 1 ,
y:(.'1 ,. 2 ) = -[h i -4- AN : - -,A 2 ) - h(i,Nj;i - 1,A2 )] (17)

1 1
I,.1..\1 2) 

= -h(i :- lA .- (z - -,.\fl)- h(i, A1 ,;-(i - 1), .2)] (18)

Note thtat on a polar raster we have Ij+( .\'N,2 ) = i,(N 1 , A2 + AI/2). Since the covariance furction

I,(i. N1 :j .%2) is assumed to be non-negative definite, equation (-) must have a unique solution. The

solutions to (15) and (16) must be identical, so that

M1 1
. .hl.. .. 3.. = NI, rV+ i, N -, ,N2)+ V -(NIN3)h(-(I- ),N2;i,N)] (19)

6



0

Equation (19) is the basic recurrence that is the heart of the Levinson-like algorithm. The left

side is the difference of two two-dimensional discrete Laplacian operators, analogous to the difference

of one-dimensional discrete Laplacian operators appearing in the split algorithms of [6]. The right side

generalizes the three-term recurrence in [6] to a multi-term recurrence; this is analogous to the matrix

recurrence in [7]. However, it is applicable to non-symmetric block Toeplitz-plus-Hankel systems, unlike

that of [7]. Writing out (19) explicitly, we have

- tZ~,1 1ri~v. NA2  - 1

1(i+ -,j. N 2) = h(i, N' J+-, 1,N 2 ) +h(i, N;j-, 2) - h(i - NI;j, N 2 )

1 1 1 1
+h( i - Ni;j, N2 + 1) + h(i - Ni;j, N2 - 1) - h(i - - N 1 + 1;j, N 2 ) - h(i - -V 1 - 1;j, N 2 )

+ [V(NI,1N 3 )h(i - 2 N 3 :j, N 2 ) + V-(Ni,N 3)h(-(i - 2),N 3 ;j, N 2 )] (20)

for all -(i - 3) < j _< (i - 3) and 1 < N 1 ,N 2 ! M. Although we have implicitly treated i as positive

throughout the derivations, the recursive equations hold for negative i as well. When i is an integer and

j is a half-integer, equation (20) will update h from the real points to the interpolated points. When Z

is a half-integer and j is an integer, equation (20) will update h from the interpolated points to the real

points.

III DERIVATION OF THE SCHUR-LIKE ALGORITHM

A. Derivation of the Schur-Like Recurrence

We still need to calculate the potentials 1 K"(N 1,N 2 ) and Vi-(NI, N 2 ) at the beginning of every update

so that we can use the recursive formula (20). To do this, we introduce the Schur variables (defined at

integer and half-integer points) •

,s0,N\jJ.\N) - I ',N:;.\ 2' + h(iNi;j, N2 ) - h(i, Nl;j, N 2 ) - E E h(i, N1 ;n, N 3 )K(n, N 3 ;j,N2 )
n=-(i-1) N 3 =1

(21)

whr .. 0 unless i = j and N1 = X 2 , in which case it is unity.
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Since the Schur variables are linear combinations of the prediction error filters biN 1 :,N2 -h(i, N 1 ; j, N 2 ),

equation (17)-(20) show that s(i, NI;j, N 2 ) satisfies the recurrence (20), but now for all j:

1 1 1 1
s(i+ -,NI;j, N 2 ) = s(i, N 1 ;j + -,N 2 )+s(i, N1 ;j - -,N 2 ) -s(i- -O N;j, N 2 )

2 2 2 2

1 1 . 1 1+s(i -~ N1 ;jN 2  1) + s(i - 1 N, + 1;j, N 2 ) - s(i - N,N) - 1;jN 2 )
+s-,N;j, I2+I, S ,2N; j,¥- IV2 - 2 zi- N

+ E [V+(NIN 3 )s(i - , N 3;JN 2 ) + V.-(N,N 3 )s(-(i - )N 3 ;j,N2 )] (22)
N3= 

I

Equation (22) is the basic recurrence for the Schur-like algorithm. Note that for -(i - 1) < j <

- 1) 9s(i, NI;j, N 2 ) = 0 by (4).

B. Computation of Potentials

Setting j = (i - ) and -(i - 1) in (22), we have

S1 1 1 1

F + 1 a)s(i 2 ,,N3; 2 , N2 ) + Vi-(N 1 , N 3 )s(-(i - 2), N 3 ;i - , S2 )]
N=1

1 1 1
NI; - ,N;i- - , N,) - s(i, N1;i, N 2 ) + Aos(i, N 1 ;i - -,N 2 ) (23)

2 2 2M 1 1 1N
A[1'+(N. N3 )(i- -, N3; -(i - -).N 2 ) + V-(NI, N 3 )s(-(i - 1),N 3 ;-(i- -), 2 )]

*V. 2 2

S (i NI;-(i - ) 2 ) - s(i, N; -i, N2) + Aes(i. N1 ; -(i - 1)N 2 ) (24)

Equations (23) and (24) can be written in matrix notation as

"+g+ + -+ X +  (25)

+ =X- (26)

where we have defined the M x M matrices

[V'+IIN, = V'+(N,,N 2 ), [V1-N,N = Vi-(N 1 ,N 2 ) (27)

N ,N i - -N; ±(i - N2) (28)

8



[X']N,N 2 = s(i- )N2) - s(i, IV,; i, N 2) + Aos(i, NI1; ±(i- ,N2) (29)

S2 2

If the system matrix defined in (4) (written explictly in (44) below) is strongly non-Angular, i.e. the

leading principal submatrices are all non-singular, then (25) and (26) cin be solved in closed form as

+ (X+ _ X-(---)-l -+)(S++ (30)

V = (X- - X+- - (31)

The strongly non-singular assumption is necessary and sufficient for (25) and (26) to have a unique

solution; the prooi of this is a direct generalization of the one in [14]. A similar assumption is required

by the standara multichannel Levinson and Schur algorithms.

The split Schur-like algorithm consists of computing s(i, N1 ;j, N 2 ) by propagating (22), initialized

using K(i, N, N2), while computing the Vj:+(Nj, N2 ) from the s(i, N 1;j, N 2 ) using (28)-(31).

C. Summary of Overall Procedure

The overall procedure can be summarized as follows. Let Ima. be the largest radius (maximum radial

prediction order). Then:

1. Initialization of Split Schur-Like Algorithm

H+1 ,0 = K+±,o(I + K 0 , 0)
- ', H±l,o = K±1 ,o(I + Ko,o) - 1

where [K+.,0]N,N2 = K(±, NI; 0, N2), [KooJN,N 2 = K(0, Ni;0, N2 ), 0

[K+,o]N01 ,N2 = K(±INi;0, N 2)

I M1
S(1_ 2 N,,,V2) = -VNI;j,N "+" 'K(±-,N ;j,N2 ) - E h(± ,NI;O, N 3 )K(0, N 3;j, N 2 )

2 N3 =1

for all j ±2Imar and N1,N 2 =1,...,M

M

s(±I,.N;j,N2 ) = 6+IN,;j,,v+K(±I,N,;j,N2 )-h(-1,N;j,N 2 )- E h(±1,N1 ;O,N 3 )K(0,N 3 ;j,N2 ) 0
N 3 =1

for all j -- ±.... ±2Ima, and N1,N 2  M

9 0



2. Propagation of Split Schur-Like Algorithm

A. Computation of Lhe potentials Vj,+( N1 ,N 2 ) and Vi-(N,N 2 ):

Compute V+(N 1 , N 2 ) and Vi-(N 1, N 2 ) from the available s(±(i- ), NI; N(i- ),N 2 ) and s(±z, NI; ±i, N 2 )

using equations (30) and (31);

B.Update the Schur variables

For j=±(i+ ) To j=±21,.,, N1 = I To M, N 2 = 1 To M, Parallel Do

Update the Schur variables using (22).

End Parallel Do {j,,Ni,N 2}.

3. Propagation of Split Levinson-Like Recurrence

A. Propagate the Boundary Points

For Nx = 1 To M, N2 = I To M, Parallel Do

1 N" 1h(i +-, ,i--,N 2 ) = h(i,N1;i-1,N2)-Vi+(N,N 2 ) (32)

1 N 1

h(i+ ,NI;-(i - 1),N 2 ) h(i,.Ni;-(i- 1),N 2 )-V -(N,N 2 ) (33)
2 2

End Parallel Do {N,,N 2 }.

B. Propagate Non-Boundary Points

For j=-(I- ) To j=(i- -), Y 1 = 1 To M, N 2 =1 To M, Parallel Do

Update h(i, NI;j, N 2 ) using equation (20).

End Parallel Do {j.N 1 ,N 2 }.

4. Repeat steps 2 and 3 from i = 1 to 1ma, with increment

Note that the Levinson and Schur recurrences (20) and (22) have identical forms, with complementary

supports. Hence they can be propagated in parallel using identical processors; this possibility was first

noted for the one-dimensional case in [16].
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IV RANDOM FIELDS WITH BLOCK
TOEPLITZ-PLUS-HANKEL COVARIANCES

In the above derivation, we have assumed that the covariance function is already known. If only a sequence

of two-dimensional time series data are available, there are two methods for obtaining a covariance

function having the desired Toeplitz-plus-Hankel structure (13),(14). The first method is to compute a

data covariance matrix, and then determine a symmetric Toeplitz-plus-Hankel block Toepiitz-plus-Ilankel

matrix close (in some sense) to this matrix. This is a two-dimensional Toeplitz-plus-Hankel generalization

of the well known "Toeplitzation" problem [17]. Some procedures for this problem are suggested in [18].

The second method is to assume that the data are generated by some underlying model, for which

unknown parameters may need to be determined.

In this section we focus on the second approach, giving some specific examples of random fields whose

covariances satisfy assumptions (13) and (14). These are merely illustrative; there are of course many

others. We also note how the algorithms of Section II relaie to the continuous-parameter algorithms of 0

[13].

A. Isotropic Random Fields

For an isotropic random field, the covariance is a function of distance only, i.e., if x and y are two

arbitrary points in the plane, then K(x, y) = K(jx - yj). Consider the special case of a isotropic random

field with covariance K(x, y) = pl--YI, which is often used in image modeling [19]. In polar coordinates

on a discrete polar raster, this covariance function can be represented as

K(i, N1 ;j, N 2 ) = p +j 2-2ijcos(2
, (N -N 2 )/M)

- p [(i+J 2 +(i-) 2 ]-[(i+j)2 -(i-j)2 ]co(2ir(NI -N 2 )/M)

1 + -([(i + j) 2 + (i - j)21 _ [(i + j)2 _ (i - j) 2 lcos(2ir(Ni - N2 )/N)lnp (34)

if I
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Note that the exponent has the Toeplitz-plus-Hankel structure required by (13) and (14), and that it

is not merely Toephtz in i and j; hence the multichannel Levinson algorithm is not applicable. If p 2L 1,

the entire covariance satisfies (13) and (14). Indeed, any slowly-changing function of distance on a polar

raster satisfies (13) and (14) in its radial and angular arguments.

B. Separable Covariance Functions

A separable covariance function is one that can be decomposed into multiplication of a function of

the radial part and a function of the transverse part, i.e., the covariance function K(i,Nl;j,N2) can be

expressed as

K(i, NI;j N2 ) -- R(i,j) x T(N 1,N 2 ) (35)

for some functions R and T. This type of covariance function satisfies (13) and (14) as long as both R

and T have Toeplitz-plus-Hankel structure. Examples include:

1. 2-D Discrete Wiener Process

The 2-D discrete Wiener process on a polar raster can be defined as

i M
Xi,N = ZUEWj,. , X0,N = 0 (36)

)=0 n=l

where wj.n is a zero-mean discrete white noise field with variance a 2 . Its covariance function is equal to

K(i, NI;j, N 2 ) = E[xi,Nxj,N2 ] = Ma 2 min(ij)

= Ma21[Ii+ i - li-ill (37)

Note that R(i, j) has Toeplitz-plus-Hankel structure and T(N1 , N 2 ) is a constant function.

2. 2-D Circularly Symmetric Markovian Random Field

In a first-order 2-D circularly symmetric Markovian random field, the output is a uniformly linear

combination of the previous "shell" of data plus white noise, i.e.
S

M

X,,N, = a E Xi-1'n + tviN (38)

nz1

* 12



If xo," is assumed to be zero for all n, and the variance of Wi,N is equal to a2, then the covariance function

is

K(i, N1;j, N 2) = E[Xi,N;xj,N2]

Ma 2 2 - (39)

Again, R(i,j) has Toeplitz-plus-Hankel structure and T(N 1 ,N 2 ) is a constant function. In the limit

a - 0 (39) reduces to (37).

C. Relations dith Continuous Algorithms

It is instructive to examine the continuous-parameter limits of some of the equations of this paper. Let

the intervals between points be 6, in the radial direction and be 2 1 radians in the transverse (angular)

direction. Introducing a radial weighting factor, as discussed earlier, and taking limits as b, and bg go to

zero result in the following transformations:

1. The discretized Wiener-Hopf equation (6) becomes the Wiener-Hopf integral equation (5);

2. 6i.N,;j ,N2 becomes a continuous two-dimensional impulse function, dominating the fther terms in

the definition (21) of the Schur variables, so that (30) and (31) may be replaced with 10 V Z X +  I

and V X-. Using this, equation (29) becomes

V(X,01;02) = -(-a + -)s(X,O;y = X, 2 ) (40)a~x a9Y

where x and y are continuous radii and 01 and 02 are continuous angles. Equation (40) has the

form of (4-17b) of [13]. Similarly, the continuous version of (13) has the form of (4-2) of [13];

3. Equation (15), with its difference of discrete two-dimensional Laplacian operators on the left side,

is clearly analogous to (Az _= Laplacian with respect to x)

(A' - 51 )h(x,0 1 ;y,, 2) = Jo V(x, 01; 3)h(x,03 ;y,0 2) do3  (41)

13



which is the two-dimensional form of (4-1) of [13]. However, (41) is NOT the continuous limit of
1 d

2  d
2

(15) with radial weighting, since dx (-_(/ f(x)) = (d + - 4 )f(x), which is not the radial7_= =x Z a TX =4

part of the 2-D Laplacian. On the other hand, 7-1"(xf(x)) = ( d2 + 2 d )f(x), which is the radial

part of the 3-D Laplacian. This shows that the results of [13], derived for the continuous 3-D case,

do not apply exactly to the 2-D case (as do the results of this paper);

4. The algorithms of this paper require the differences of the radial parts and transverse parts of the

Laplacian of the covariance to be separately zero: (13) and (14) must be separately zero. However,

in the continuous limit, we have h(i, NI;n, N 3) ;z h(i-1,NI;n,N3 ), and the last two sums in (11)

may be combined. Then it suffices for the sum (A,. + Aq)K(i, NI;j, N3 ) = 0, rather than (13) and

(14) separately. This agrees with the requirement (A. - A ,)K(x, y) = 0 for the algorithms in [131.

D. Application to Discretized Continuous- Parameter Problems

We can draw some important conclusions from these observations. If the algorithms of this paper are

being used to solve the discretized version (6) of the Wiener-Hopf equation (5), then :

1. Equations (30) and (31) may be replaced with the approximations V+ ; X + and V X-

2. By the chain rule, any continuous function of the distance between two points will satisfy (13) and

(14). since the square of the distance itself does. Hence the algorithms may be used for any isotropic

random field. Note in particular that (32) becomes

K(i, N1 ;j,.N2 ) = p6 (i2 +j 2 -2:3coa(NI-N 2 )6e) (42)

and p6 - 1 as , - 0;

3. Conditions (13) and (14) may be replaced with the more general condition

(A, + Ao)K(i, NI;j, Nt) = 0.

Numerical studies have shown that approximation (4) gives very good results for 4 , 0.001, but approx-

imation (6) is much more sensitive to non-infinitesimal 6.
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V COMPLEXITY AND GENERAL TOEPLITZ-PLUS-HANKEL
SYSTEMS 0

A. Computational Complexity

We determine the number of Multiplications-And-Divisions (MADs) needed to solve (4) up to order

i = Iax. Although some current DSP chips can perform multiplications as quickly as additions, the fact

remains that multiplication is a more complex operation than addition. Also, the computational savings

in the number of additions is similar to that for MADs, although we omit details. 0

The initialization of the Levinson-like recurrences requires 2 M x M matrix inversions and 4 M x M

matrix multiplications, or 2(--3 + -- ) + 4M 3 MADs. The initialization of the Schur-like recurrences

requires 8 1,,, M x Al matrix multiplications , or 8I,,,.xM 3 MADs. Each Schur-like recursion update of 0

s(i, N 1;j, N 2) from i to i + 1 requires 16(Imx - i)M 2 MADs. Computation of the potentials requires 4

Al x M matrix inversions and 6 M x M matrix multiplications. Finally, updating h(i, N 1 ;j, N 2 ) from i

to i + in the Levinson-like recurrence requires 4(2i + 1)M 2 MADs. The total number of multiplications 0
2

needed to solve (4) up to i = Iax is

4 A13  3  m 2  3 w2x M 3  M 2

+2(3 + -) + 8IaxM3 + 2 [16(Ima, - +i)M2 +(4(3 + -) +6M 3 ) + 4(2i+ l)M2 ]  03 2 ~t=1
2 A 2 + M68M3  M 3  M 2

S max + I+4M 2 )+4M 3 +2(-+ -) (43)3 3 2

This can be seen to be O(IaM2 ) MADs if Ima >> M >> 1. Solution of (4) using Gaussian 0

elimination would require +x (2tmoxM) 2 
- O(IamaM 3 ) MADs. Hence the savings in MADs over

Gaussian elimination for large Iax and M is a factor of order ImaxM.

B. Comparison with Reformulation as a Block-Toeplitz System

In [20] Merchant and Parks noted that a Toeplitz-plus-Hankel system of equations can be reformulated

as a block-Toeplitz system of equations with 2 x 2 blocks. Although no multichannel generalizations were

discussed in [20], it is not difficult to show that a system of equations in which the system matrix is
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the sum of a block-Toeplitz matrix and a block-Hankel matrix, where the biocks are M x M, can be

reformulated as a block-Toeplitz system of equations with 2M x 2M blocks. This could then be solved

using the multichannel Levinson algorithm. We now compare this approach, which we call the generalized

Merchant-Parks procedure, to the algorithm of this paper.

If the generalized Merchant-Parks procedure is used to solve (4) up to order i= Imax the number

of MADs required is 3212"aM 3 + '"ma-- + 2M 2), since 2M x 2M matrices are being multiplied and
33

propagated. Hence if ma,, >> M > 1 the algorithm of this paper requires roughly - as many MADs

as the generalized Merchant-Parks procedure; for large M this can be quite significant. If M = 1 the

algorithm of this paper reduce to that of [14]. which requires roughly 75% as many MADs as the original

Merchant- Parks procedure [201.

On the other hand, the algorithm of this paper requires that the system matrix be block Toeplitz-

plus-Hankel with Toeplitz-plus-Hankel blocks, while the generalized Merchant-Parks algorithm does not

require the blocks to have special structure. Thus the generalized Merchant-Parks algorithm requires

more computation, but solves a more general problem.

C. Solution of Arbitrary Toeplitz-plus-Hankel Block Toeplitz-plus-Hankel Systems

Equation (4) can be written as the following Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system:

I+ K_,,_j ... K_,,
0 H,_(,_j) "- Hz,.(_) -A

[-I H -. (-H . H _,,(,_) 0 J
Kj,.- ... I + Kj,,

*S,._, o ... 0 SI,,,1
SI-1 0 .. 0 i'i(44)

S_,_,i 0 ... 0 Sg- s

where

[H±,±1,N, A-h(+i,N 1 ;±j,N2 ), j = -(i- 1),...,(i- 1),1 < N 1,N 2 < M (45)

(Kj.1JN ,N2 4 K(j, N1 ; I, N 2 ), j, = - (i-1),... ,(i -1), 1 < N1, A2 < M (46)
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= s(±iNN, NI; ±i, N2), i< N1, N2 :5 M (417)

In (44)-(47) 1 is the .1l x M identity matrix and 0 is an l x Ml matrix of zeros. Conditions (13)

and (14) are equivalent to requiring that the system matrix in (44) be block Toepli tz -plus- Hankel with

Toeplitz- plus- Hankel blocks.

In this section we solve a Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system of equations having

the same system matrix as (44), but with an arbitrary right side. This system is

I + K-,j . K..i,j

K,,-i .. I+ ,~

=[B-, B_(j..) Bi-,. Bi (48)

where the right side is arbitrary. Recall that the algorithms of this paper do not require the system

miatrix to be symmetric. To find the solution X(=' [Xj...XD note that from the definition (21) of

7, N 2 ) we have

[ TIn 1+ K -i, .i ..... K...,i

L K2,., I+ K,

0 0

where

m r-

Am f:,i.ml.t..v,,..Ht.m+ij..,I,70TCT1 (50)

H _ 10.. 0 (rnl (-) ... jH+Ii~ir, 2~jO .. 01 (51)

rn-1 m

Equation (44) is a special case of (49) with m =1.
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Assume that all of the central submatrices of the system (44) are non-singular. Then the uinique

solution to (48) can be expressed as a linear combination of Hm,m = -i,... ,i by using (49)

X = Cm,,m ( i.e. Xj = CIHj). (52)
m=-immi~O 1=-i

Here Cm can be found by equating the linear combination (52) to (48), for 1 < j < (i - 1):

C-jS-,-.. + Cjj- = -(B.., + C"§ -j (53)i-1

c*jSj,j + CjSj, = -(Bj + CnhS,,). (54)
,=-0j-1)
,1

The overall procedure is as follows. Compute the Hi,, and Si,j using the Levinson-like and Schur-like

algorithms. Next, recursively compute C~, in increasing j by solving the 2M x 2hN1 systems (53) and

(54). Finally, compute X using (52).

The procedures in (52-54) require roughly 412axM 3 MADs, which for Ima., >> M >> 1 dominates

the 2412a 12 MADs that is the dominant term in the number of MADs (43) required by the basic

algorithm. For an arbitrary right side, the generalized Merchant-Parks algorithm requires 481 2..A 3

MADs. Thus the algorithm of this section requires only -L as many MADs when Im,, >> M >> 1.

VI CONCLUSION

New fast algorithms for solving the discrete two-dimensional Wiener-Hopf equation on a polar raster when

* the covariance function has Toeplitz-plus-Hankel structure ha .-, been derived. Since we have performed

explicitly discrete derivations, instead of just discretizing the continuous versions [13], the algorithms

do not require fine discretization or closely-spaced points; if adjacent points are close enough, then the

algorithms reduce to the continuous case [13]. In particular, the proposed fast algorithms make full use

of the Toeplitz-plus-Hankel structure of the covariance function, so that the overall computational com-

plexity is only O(Im2,x M) MADs, as opposed to O(I .M 3 ) MADs for the generalized Merchant-Parks

algorithm discussed in the paper and O(I azM 3 ) MADs for Gaussian elimination. These algorithms are

also highly parallelizable, making them even more favorable in a vector/parallel processor environment.
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The smoothing filLer for estimating the points inside the disk of observations can be computed from

the prediction filter,; using a generalized discrete BeUman-Siegert-Krein identity, as was done for the

one-dimens.inal continuous case in [9]. The overall complexity is reduced compared with Gaussian

elimination. This is considered in the separate paper [8].

Unresolved issues include ,napping oi this algorithm into optimal array processor architectures, the

nuunerical stability of the algoiithm, and practical applications of this -gorithm in problems such as

image restoration and coding. Preliminary results on these issues have been encouraging.
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FIGURE HEADING

1. The polar raster on which the two-dimensional random field is defined, where M = 8

22



( (3.3)

(3,6) (3,8)

(3,7)

* denotes the real point

0 denotes the interpolated point
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APPENDIX D



A. Basic Prcblcn

The problem considered is as follows. From noisy observations {Yi,N,M} of a zero-mean real-

valued discrete random field {ri,N,M} at the points (i, N, M) inside a sphere, compute the linear

least-squares estimate of Xi,N,M for all points on the edge of the sphere. Here i is an integer radius

from the origin, and N and M are the integer indices of the arguments (angles).

The observations {YI,N,M} are related to the field Zi,N,M by Yi,N,M = ZiN,M + viN.M, where

{Vi,N,M} is a zero-mean discrete white noise field with unit power, and {Xi,N,M} and {v,,N,M} are

uncorrelated. The covariance o f{X,,N,M}, E[xS,N, ,M, xj,N2 ,M2 ] = K(i, N, M; j, N 2 , M 2 ), is assumed

to be a non-negative definite function with Toeplitz-plus-Hankel structure shown in (6) and (7).

The estimates of Xi,N,M at tne edge of the sphere are computed from the observations {YiN,M }

using
s-I N M

,NIM = E E Z h(i,Ni,Mj;j,N2,M 2)y,N,,M (1)
j-0N2 =l M2=1

The optimal prediction filters h(i, N1 , M1 ; j, N 2, M 2) are computed by solving the three-dimensional

discrete Wiener-Hopf equation

K(i, Ni, MI; j, N2, M 2) = h(i, Ni, Mi;j, N 2, M 2)

i-I N Af

+ 1 Z 1 h(,N,,Mi;n,N3 ,M 3)K(n,N 3,M 3;j,N2 ,M 2) (2)
n=-(i-1) N 3 =1 N1 3 =1

for all -(i- 1) < j < i- 1, < N1 ,N 2 < N and 1 < M1 ,M 2 < M. The goal is to derive a

fast algorithm for solving (2) when K(i, Ni, MI;j, N2, M2 ) has the Toeplitz-plus-Hankel structure

shown in (6) and (7) below.

B. Derivation of the Levinson-Like Recurrence

Define the discrete wave operators A,, A0 and A0 by

1



S

1 1

- f(i, N 1 ,M'I; + 2 N 2, M 2) - f(i, NI, M;j - -,N 2 ,M 2 ) (3)

Aef(i, N,MI;j, N 2,M 2) = f(i - ,((N + 1)),,MI;j, N2, M 2) + f(i -,((N - 1)),,M 1 ;J, N 2 )
2 2

111 N1- fAi - -jN, MI; j,((N2 + 1)) 1, M 2) - f (i I, I; j, ((N2 - 1))1, M2 ) (4)

A f(i, NI,MI;j, N 2 , M 2) = f(i - ,NI,((MI + 1))2;j, N 2, M 2) + f(i- 2N',((M1 - 1))2; j, N 2)2 2
1 1 N,1j 2(M )2 5

- f(i - ,N, MI;j, N 2,((M2 + 1))2) - f(i - I;'j,N2,((M2 - 0)2) (5)
2 22

where A, ,A0 and AO can be regarded as discrete versions of the continuous operators (7 - 0

a2(), (8 - 82), and a2 - 82 ) for the radial part and transverse parts, respectively, and

(('))1(2) means the mod N(M) operation. To save space, we will omit the ((.)) in the following

derivations. We assume that the covariance function has the Toeplitz-plus-Hankel structure that S

satisfies the following forms

A,K(i, NI,M; j, N 2, M 2) = 0 (6)

(Ae + AO)K(i, NI,M 1 ;j, N 2 ,M 2 ) = 0 (7)

Applying the Laplacian operator A = A,. + A 9 + AO to the equation (2), we have after some

algebra S

1 1 1
h(i + ,N1, MI;j, N 2, M 2) = h(i, NI,MI;j + ,N 2, M 2) + h(i, NI,M;j- N 2, M 2)

2 22-i-1 1 1 .N,1j N -,2
-h -- ,Ni,M1i;j,N2 ,M2 ) + h(i - - , 1 ;j,N2 + 1,M42 ) + h(i - 2' 1 M;,N , 2

1 N1+1M~,NM) ~ -1 1
-h(i - 1,N, + 1,MI; j,N 2 ,M 2) - h(i - N1 - 1, MI;j, N 2 ,M 2 )+ h(i - , N'I, MI;;j, N2 , M 2 + 1)

2 2'11 1
+h(i - -, N, M 1;j,N2 - 1, M 2 - 1) - h(i - 2' N1 , M, + 1; j, N2 , M2 ) - h(i - 1, NI, M - 1; j, N 2 , M 2)

N M 1 1
+ E [V + (Ni,' M ;N 3 ,M 3 )h(i- ,N 3 , M 3 ;j, N 2 ,M 2)+Vi-(Ni,M;N 3 ,M 3)h(-i+-,N3 , M 3 ;j,N 2,M 2)]

N 3 =1M 3 =1

(8)

2



for all -(i - 3) <j < (i - ), 1 < N 1,N 2 < N and 1 < M1 ,M 2 < M. Here we have defined the

potentials

1 1

V+(N 1 , MI; 2 ,M 2 ) = -[h(i + -, NI,,M;i - IN2, M 2 )- h(i, NI,AMI;i- 1,N 2 , M 2 ) (9)
2 2

V (Nj, MI; N2,A1 2) = -[h(i + NIM; -i + MN2, 2) -h(i,N,,M1;-i+l ,N 2.M 2)] (10)
2 2'

C. Derivation of the Schur-Like Recurrence

We still need to calculate the potentials V+(N 1 , M1 ; N2, M 2 ) and V-(Nj, M1; N2, M2) at the

beginning of every update so that we can use the recursive formula (8). Since an inner product is

a bottle neck in a parallel processing environment, we overcome this difficulty by introducing the

Schur variables

s(i, Yi, MI; j, N 2, M 2 ) = bi,Ni,Mi"j,N2,M2 + K(i, N, MI; j, N2 , M2) - h(i, N, M1; j, N 2 , M2)

i-I N M

- 1 E E h(i,N,M;n,N3,M 3)K(n,N 3,M 3;j,N2 ,M 2) (11)
n=-(i-1) N 3 1 M3 =1

where bi,NI,Ml;j,N,M2 = 0 unless i = j, N, = N2 and M = M 2, in which case it is unity.

Since the Schur variables are the linear combinations of the prediction error filters bi,N,MI;j,N2,M2 -

h(i, N1 , M1 ;j, N 2 , M 2 ), equations (8)-(11) show that s(i, N, M;j, N 2 , M 2 ) satisfies the recurrence

(8), but now for all j:

1 1 M1
s(i + 2,N, MI;j, N2 , M 2 ) = s(i, NI,AM;j + -,N 2 , M 2 ) + s(i, NI, MI;j - , N 2 ,M 2 )

1 1 1 .AsA~L'!L NL ..j, N l , M2 )
-s(i - IN,M;j, N 2 ,M 2 ) + s(i - I,N MI;j, N2 + 1,2)+ s(i - 1,

1 1
-s(i - N, + 1, Mh;j, N 2 , M 2) - s(i - ",N 1 - 1,M;j, N2 ,AI'2) + s(i - ,N 1 ,M ; j, N2 , M 2 + 1)

1 1 1
-4-~i-Ni,Mlh;j, N2 - 1,M/2 - 1)- s(i-, N,M 1 + 1;j, N2,M2 )-s(i- ,N 1,M 1 - 1;j, N2,Ml 2)

22
N M 11

+ ~j [V+(N 1,M 1 ;N3,M 3 )(i--,N 3 ,M 3 ;jN 2,M 2 )+V - (NI M I ; N
3,M 3)(-i+2, N 3 , M

3 ;j , N 2 , M
2 )]

N 3 =I M 3 =1

(12)
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Equation (12) is the basic recurrence for the Schur-like algorithm; for -(i - 1) _ j _< (i- 1),

s(i, N1,M;j, N 2 , M 2 ) = 0 by (2). 0

Setting j = (i - ) and -(i - ) in (12) respectively, we can solve for vj+ and V - using the

following matrix equation

sV+ I s(-

si -+  S si-

where we have defined the NM x NM matrices

1 114
[St*]L 1 ,L, = s(±(i- 1),N1,M; ±(i - 1),N 2 , M 2) 14)

[V*]L,.L2 V'±(N1, M1; N2, M2)15

[S*]L1 ,L1 = (i - -) N2 , M 2 ) s(i, N1,MI; ±i, N 2 ,M 2 )
2 2'

1 .1
+ (A9 + AO)s(i - ,N 1,MI;:±(i - ),N 2 , M 2 ) 16)

and L 1 , L 2 are related to N 1, M 1 , N 2 , M 2 by

Li = (N 1 - 1)M + M1  (17)

12 - (N - 1)M - M2 (18)

for all 1 < N1 ,N 2 5 N, 1 < M1,M 2 < M, and 1 < L t, 2 < NM

D. Summary of Overall Procedure 0

The overall procedure can be summarized as follows. Let I,,,, be the largest radius (maximum

radial prediction order). Then for all 1 < N1,N 2 < N and 1 < M1 ,M 2 :_ M:

1. Initialization

Compute h(±, N1 , M; 0, N2, M2), h(±1, N1 , M I ; 0, N2, M 2) using (2).

Compute s(± L, N1,Mh;j, N2 , M 2 ),A s(± .Ni,Mi;j, N2 ,M 2 ) using (1 )foraJj ±l,...,±2Iax. •

4



2. Propagation of Split Schur-Like Algorithm

A Computate the potentials V"(N, Mj;N 2 ,M 2 ) and V-(N,AM;N 2 ,M 2 ) by solving the

matrix equation (13);

B Update the Schur variables using (12) for j = ±(i + 1),. ,±2,ax.

3. Propagation of Split Levinson-Like Recurrence

A. Propagate the Boundary Points:

1 1

h(i +- -,N1,M 1 ;i - , N 2 ,-M2 ) = h(i, N,M';i - 1,N 2 , M 2) - V,+(NI,M;N 2, M 2) (19)

1 1

h(i + -1, NM;-i + 1, N 2, M 2) = h(i, Ni,Mi;-i + 1,N2, M2) - V-(Ni,Mi2;N 2,M 2) (20)
2 2'

B.Propagate Non-Boundary Points:

Update h(i. NI,MI;j, N 2 ,M 2 ) using equation (8) for j = -(i - 1) to j - (i- 1)

4. Repeat steps 2 and 3 from i = 1 to I,, with increment 12

Th overall procedure is similar to the that for the 2-D algorithm, except that now

there are two instead of one angular variables needed to be propagated. The number

vf NIADs required is roughly O(Ia:vM2), which is far less than O(I ,GN"M3)

MADs required for the generalized Merchant-Parks algorithm and O(I ,xN 3 M3 )

MADs for Gaussian eimination. Hence, the computational savings in the 3-D case

are even more significant than those in the 2-D case. Furthermore, these algorithms

are also highly parallelizable, making them even more favorable in the parallel pro-

cessor environment.
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Abstract

New fast algorithms for linear least-squares smoothing problems in one and two dimensions
are derived. These are discrete and multidimensional generalizations of the Bellman-Siegert-Krein
resolvent identity, which has been applied to the continuous, one-dimensional stationary smoothing
problem by Kailath. The new equations relate the linear least-squares prediction filters associated
witH discrete random fields to the smoothing filters for those fields. This results in new fast
algorithms for deriving the latter from the former. In particular, used in conjunction with recently-
developed generalized one (two) dimensional split Levinson and Schur algorithms for covariances
with (block) Toeplitz-plus-Hankel structure, these algorithms can be used to compute smoothing
filters for random fields defined on a polar raster, using fewer computations than those required by
previous algorithms.
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I INTRODUCTION

In tomographic imaging problems solved by filtered back-projection [1], and in spotlight synthetic

aperture -adar [2], data are acquir-d on a polar raster of points, rather than on a rectangular lattice.

Although it is possible to interpolate from the polar raster to a rectangular lattice, it is clearly

preferable to deal with the data as it is. This is particularly true if the data are noisy, and smoothing

is required.

Regarding the data as a random field with a known covariance function, linear least-squares smooth-

ing may be performed. Computation of the smoothing filter requires solution of two-dimensional dis-

crete .ormal equations in polar coordinates. Fast algorithms for solving these equations are desirable

when the covariance has some structure. However, properties such as stationarity are not manifested

as block-Toeplitz structure when the random field is defined on a polar raster. For example, the

covariance of an isotropic random field on a rectangular lattice is a Toeplitz function of the abscissae

and ordinates, while on a polar raster it is a Toeplitz-plus-Hankei function of the radii. 0

Kailath [3] has noted the applicability of the Bellman-Siegert-Krein (BSK) resolvent identity to

smoothing problems for continuous one-dimensional stationary random processes. First, the prediction

filter for the process is computed, using the continuous-time Krein-Levinson equations, or by direct

solution of the Wiener-Hopf integral equation. Then the BSK identity is used to compute the smoothing

filter, which is the Fredholm resolvent to the integral operator associated with the covariance function.

This approach has been extended to continuous-time close-to-Toeplitz covariances [4] and continuous-

parameter isotropic random fields [5], although the latter uses a Fourier expansion into one-dimensional

processes.

In this paper we generalize Kailath's approach in three ways: (1) from continuous time to discrete

.ime, resulting in an algorithm directly applicable to real discrete data; (2) from one dimension to two

dimensions, without requiring an assumption of isotropy or an initial Fourier expansion; and (3) from 0

stationary to non-sta ionary random fields.

1 0



Although the new algorithms of this paper do NOT require the covariance function to have special

structure, they are most useful when used in conjunction with fast algorithms for c,.mputing the

prediction filters that DO require and exploit special structure in the covariance function. These

include the Levinson algorithm [6) for stationary one-dimensional random processes, the algorithm of

[71 for non-stationary one-dimensional random processes with Toeplitz-plus-Hankel covariances, and

the algorithm of [8] for two-dimensional random fields on a polar raster with Toeplitz-plus-Hankel

structure in the radial and angular variables of the covariance.

The paper is organized as follows. Section II derives the algorithm for computing the smooth-

ing filters from the prediction filters for one-dimensional random processes. Section III derives the

corresponding algorithm for two-dimensional random fields on a polar raster. Section IV discusses

computational complexity, and compares the proposed algorithms to other algorithms for comput-

ing the smoothing filters. We also note how the discrete-time equations of this paper reduce to the

continuous-time equations of L3] and [9]. Section V concludes with a summary.

II DERIVATION OF THE 1-D SMOOTHING FILTER

A. The Basic Problem

The smoothing problem considered in this section is as follows. Given noisy observations {Yk, -M < k < MI

of a zero-mean real-valued random process {xk}, compute the linear least-squares estimate of xk for

each k using all of the observations. The observations are related to the process by Yk = Xk + nk,

where {fnk} is zero-mean discrete white noise with unit power uncorrelated with {xk} (white noise

with arbitrary power o2 can easily be handled by scaling). The covariance function ki, 1 = E[xixj] of

{xk) is known, and is assumed to be positive semi-definite.

The linear least-squares estimate ii of xi based on {yk, -M < k < M} can be expressed as

M
j-M

where the superscript M for giy denotes that the range of the data is from y-M to YM . Using the

2



0

orthogonality principle of linear least-squares estimation, the smoothing filters g,M can be computed

by solving the discrete normal equations 0

M

kij -- g+ E g for -M<i,j M (2)
g=,-M

In the special case when i = M + 1, equation (2) becomes the discrete Wiener-Hopf equation

M MMM kkM+,,j= gM+lj + E gM+l,n ,j = hM+,j + E hM+,,k,,j for - M < j _< M (3)
n=-M n=-M

w g +, M f
= gM+1J is the prediction filter. The hij are assumed to have been already computed,

presumably using some fast algorithm such as those of [6], [7], or [8]. Our objective is to derive a

recursive formula for computing the smoothing filters Y from the previously computed prediction

filters hi,.

B. Derivation of the Algorithm

Writing (2) with M replaced by M + 1 and subtracting (2) gives

M(gM+l M 9t? ME[g+l - My~ M+I kM+4
A 13 MI n~ . +l kgi,(M+1) (M+),J] + g,-(M+I)k-(M+l),j

n=-M

Inserting (3) in (4) results in

M
(gM,, g ))+E (gY+ - g )k-,-- -- (;,n

M MM+I M+ 1

+ gi,(M+l)[h(M+I),j + E h(M+l),n k n ,j ] + gli,-(+l)th-(M+l),J + 1 h-(M+l),nkn,j] (5)
n=-M n=-M

and reordering (5) gives
M •

( Y + 1 _~ M
-gg,) + E (g+1 - )k14 sx~,n n

M-- gMl)(+)j iM+l h-(M+l),j]- [g+ MI~hm,, + M+1 I h- lk[gM+1 h + [i,(M+l)h(M+),n + M+) -(M+),nJkn, (6)

n= -M

Since the covariance function kij is positive semi-definite by assumption, 6ij + kij is positive

definite, and the solution to any system of equations with system matrix consisting of 6i, + ki must

3 •



be unique. Therefore, we have

(g'"- gIA) = -[g9+ ~lh(MI + g, M+ +)h-(M+1),I] for all - Ml < i,j Ml (7)

Equation (7) allows gj to be computed recursively from gyand the prediction filters h±(M+1), 3 .

Note that gAf and h±(Af+1),j may be computed in parallel.

C. Computation of Boundary Points

In order to use (7), the boundary points gM 1 ) must be computed first. This can be done as

follows. Setting j=±(M + 1) in (2), we have

M
(1 + k(m+1),(m+1) -Z h(M+l),flkf,(m+l)lgM+

n=-M (M)

M M
+ -(M+1),(M+1) - 1: ,-(M+i) = :,(M+1)]m+ - 1 s gY n,(M+1) (8

n- M n= -M

M

[k(m+1),..(M+1) -E hMIk,(+)g~

n= -M

M M

+(1 + k-(M+1),..(M+l) - E h-M ),kfl,.(M+1)]gM~ 1 ) = ki,(M+l) - g gkn-(M+l) (9)
n=- n=-M

These equations can be written as a2 x 2 matrix equation for each of the unknown g,(+)

k~+)(+)- Zn=-M h(m+l),nkn,(M+l) k-.(M+1),(M+1) - FnM h..M1,k~,M[k(m+1),-.(M+1) Zn=M Mh(m+1),n kn,-.(M+l) 1 + k-.(m+1),-.(M±1) - En=M h.(Mlkn,..M1

[M+1 iF (MI 1 MmkMI
X 9s(Ml)I,(M+l (Ml - 9;M~f,nM1 (M + 1):5 i <- (M + 1) (10)[ M 1 ) ki,.(M+l) - E ,-M gO kl,-(M+1)]

where we have used thie identities h(+)n=9M+I, n -MI, 9-M+,n Note that the

system matrix in (10) is independent of i.

D. Summary of 1-D Algorithm

4



Given the data {Yk} in the interval [-L,L], the entire algorithm for computing the smoothing

filters may be summarized as follows:

1. Initialize using ill - hij for all -(1iI - 1) < j < Iii - 1.

2. Given -M < i,j < M, update to as follows:

_M+I M+I

(a) Compute the boundary points 9 i(M+I) and 9 t,-(M+) by solving the 2 x 2 system (10).

(b) For each i and j, -M < ij _ M, compute g i' from gM using (7). If kij has special

structure, compute hij in parallel using a fast algorithm (e.g., those of [6] or [7]).

(c) Continue for M = jil- 1 to L.

III DERIVATION OF THE 2-D SMOOTHING FILTER ON A
POLAR RASTER

A. The Basic Problem

0
Now we consider the smoothing problem for a two-dimensional random field defined on a polar

raster, whose points lie along radial lines in 2N angular directions (see Fig. 1). The problem considered

is as follows. Given noisy observations {yi,k,0 < i < M, 1 < k < 2N} of a zero-mean real-valued

discrete random field {Xi,k} at the points (i,k) of a polar raster on a disk, compute the linear least-

squares estimate of xi,k for each (i, k) using all of the observations. Here the first subscript denotes

radial distance from the origin and the second subscript denotes angular position (k corresponds to 0

the angle 27rk/2N).

The observations {yj,k} are related to the random field {xi,k} by Yi,k = xi,k + ni,k, where {hi,k} is

a zero-mean two-dimensional discrete white noise with unit power uncorrelated with {xi,k} (white noise

with arbitrary power a 2 can easily be handled by scaling). The covariance function kI,N,;J,N2 =- E[zi,NTjN 2 ]

of {zi.k} is known, and is assumed to be positive semi-definite.
0

From Fig. 1, it is clear that the point (i,k) = (-i,k±N); in the sequel the point (i,k),N + 1 < k < 2N

will be denoted by (-i, k-N). The linear least squares estimate Zi,N of xi,N, based on {y, ' , 0 < j<M,
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1 < k < 2N}= {yj,k, -M < j < M, 1 < k < N} can be expressed as

M N

= E gi ;,N Yj,N (11)

j=-M N 2 =1

where the smoothing filtersgNrM ;j.N2 satisfy the two-dimensional discrete normal equations

MM N
E + E, g,N;,N, ,kNN;jN 2  - M < i,j < M, 1 < N,,N 2 < N (12)kjN~,2= giNJ,2+i,N ;,N3k,3;,2- - - --

n=-M N3=1

A radial weighting n can be introduced into the double sums in (11) and (12) by replacing ki,N,;i,N

and M with Vzki.N,;j,N, and z3gm; this allows the algorithm to be applied to a dis-

cretized two-dimensional integral equation.

B. Derivation of the Algorithm

The derivation is identical to that for the one-dimensional case, since the angular sum is unaffected

by the increase of the radial sum from M to M + 1. The result is (compare to (7)):

N N
M+1 M M+I h (13)i,YNi;,,N 2 - - - gN 1 ,,N3M+I,N 3;j,N 2 + Z h_(M+I),N3 .i,N 2 ] (13)9 N, iiNx ;-(M+I),Na

N3 =1 N3 =I

for all - M < i,j <_ M,1 < N1 ,N 2 :5 N

Here the hiN A ,N2 ar2 the two-dimensional prediction filters. The hi,N1 ;j,N 2 could be

computed recursively in parallel with (13), using the fast algorithm of [8].

C. Computation of Boundary Points

As before, we need to compute the boundary points (M+1) prior to using (13). Setting

j = ±(M + 1) in (12) results in the equations (compare to (8) and (9))

N N M N
[M+N -M+IN2+ Z g+I N 3 km+1,N;M41,N- E g,,N 1 ;M+IN 4 ( Zhm+,N4;n. 3 knM;m+1,N2 )I

N 3 =I N4=1 n=-MN3 =l

N N M N
+[ Z _M+I k - E M+I E

P4=1 (MI)N P4=1 (MI)N4 ... M+)P ,N3 kn,N3;(M+1),N 2)N3=1 N4=1 n=-M N3=1

M N
=kiNg;(M+1)N 2 - E i,N1;n,N3 kn,N 3;(M+I),N2  (14)

n--M N 3=1

6



and

N N M N
g~k '+I kmN-(+)2 -Z M+i E 1 mN,.N,,,,;(+)N)

i~g,N1;M+ l.A 3 M+,i-Ml, 2 -~ ,Ni;-(M+1),N4(L Zh+,;nNkN-Mi)N]
N3 =1 N4 =1 n=-M N3 =1

N
+ yI g(~1( )k-(M+I),N 3 ;-(M+1),N 2

N3 =1

N M N
- (l(M+l) ( E E: h-.(m+1),N4;n,Nkn,N3;..(M+1),N2 )]

N4=1 n-M N3=1

=kNi;-(M+1),N 2 - E Ej g9 1 ;,N,3 kn,N3;-(M+'-),N2  (15)
n=-M N 3 =1

If we define the following N x N matrices (1 < N1, N 2 :5 N)

[G'JN2 ,N2 A 'M+ ) (16)

M N

and then define from equations (16)-(18) the additional N x N matrices

A + ++ B L1K-+- H-K (19)

C K+- H+K-, DA-I +K--- H-K (20)

m IV
[R]Nl,N 2 =ki,Ni;(M+),1 2 - E 1: giMi;nN 3 kn,N;(M+),N2  (21)

n=-M N 3 =l

M N
[SIN1 ,N2 A- ki,Ni;-.(M+1),N 2 - E E ;Mp~n 3;.M+)N (22)

in=-M N3=1

then equations (14) and (15) can be written in matrix form as

G+A+G-B= R (23)

G+C+G-D= S (24)
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Equations (23) and (24) are a 2N x2N system of equations for G+ and G-; compare them with (10)

(for which N = 1). However, a further simplification is possible. Since the system matrix ]
C D

is the same for each i, equations (23) and (24) can be solved in closed form to give

G +  = (R- SD- 1 B)(A- CD- 1 B) - l (25)

G- = (S - RA-1C)(D -BA-1C)-  (26)

independent of i.

Hence computation of the boundary points gM+i for all i requires only the inversion ofHenc coputtionof he oundry oins :i,Nl;4.(M+I),N2

four N x N matrices in (25) and (26). This is significant, since the b,,ootaing filters gi,NlM wiii

generally be computed for all i and N 1, N 2 (we generally wish to smooth all or most of an image, not

just one pixel). This is where our algorithm saves a significant amount of computation, as compared

with other algorithms (see below).

D. Summary of 2-D Algorithm

Given the data {Yi,k,-L < i < L,0 < k < N}, the entire algorithm for computing the two-

dimensional smoothing filters may be summarized as follows:
1. Initialize using g-'l.N2 = hNi;I,N2 for all -(ii - 1) < j < il - 1 and 1 < N1,N 2 < N.

2. Given i ;J,N2, -M i,j _ M, 1 < N1,N 2 < N, update to i,N;jN2M+ as follows:

(a) Compute theb ypoints M+1 nd M+1 by solving in parallel the(a) ompte he oundry oins :i,Nl;(M+i),N2 an i)V1;_(M+i),N2

2M + 1 2N x 2N systems (25) and (26).

(b) For each i and j, -M < i,j <M, and each N1 and N2 , 1 < N 1,N 2 < N, compute gM+1
g,,N 1 ,,N 2

from 9 1 ,N2 using (13). If ki,N,;Jp 2 has special structure, compute hi,Nji,N 2 in parallel

using a fast algorithm (e.g. the algorithm uf [8]).

(c) Continue for M = Iil - 1 to L.

8



IV COMPUTATIONAL COMPLEXITY

We determine the number of Multiplications-And-Divisions (MADs) needed to compute the smoothing

filters from the prediction filters. We also determine the total number of MADs needed to compute the

smoothing filters from the covariance function, assuming that the latter has special structure and a

fast algorithm has been used to compute the prediction filters. Although some current DSP chips can

perform multiplications as quickly as additions, the fact remains that multiplication is a more complex

operation than addition. MADs can still be used as a rough guide to the computational complexity

of an algorithm.

A. Computational Complexity of the One-Dimensional Algorithm

The number of MADs needed to compute the smoothing filters from the prediction filters, given

data {y_, -L < j < L}, can be determined as follows. For each i, updating the smoothing filters from

giM to gM+l (this corresponds to adding two data points at j = M + 1 and j = -(M + 1)) requires

6(2M + 1) +8 MADs to compute the boundary points i, (the six sum-of-products computations

in (10)), and 2(2M + 1) MADs to update the other g, to in (7). The total number of MADs

to compute gL* for one i and all j is thus 'L=IiIj[8(2M + 1) + 8] = 8(L 2 - i2 ) + 24L + 81i + 16.

However, the total number of MADs needed to compute gf,% for all i and j is only )"f.=[4(2M + 1) +

2] + i=_L _L=IjjI[4(2M + 1) + 6] = 51 L3 + 34L2 + 482L + 12, since the system matrix in (10) is

independent of i, and thus need not be re-computed and re-inverted for each i.

In the sequel, we assume (for purposes of comparison) that L >> 1 and i >> 1. Then the dominant

terms in the number of MADs are the terms of highest order in L and i. To facilitate comparisons,

only these dominant terms will be given.

If the covariance kij is To-piitz, i.e. {x& is a stationary process, then we have kij = ki~il = k-i,-i

and g, = gM_ from (2). Then two of the four sum-of-product computations in the system matrix of

(10) are redundnt, so that computation of g', for one i and all j requires only 6(L 2 - i2) MADs. Also,

9



Covariance Filter for LTZ or MP L+BSK or [7]+BSK

Symmetric single point i 8L 2  10L 2 - 6i2

Toeplitz all -L < i < L 4L 3  22L 3

Toeplitz-plus- single point i 64L 2  32L 2 - 8i 2

Hankel all -L < i < L 64L 3  51L 3

Table 1: Numbers of MADs required for some specific covariance functions to solve (2)

SCovariance Filter for LWR or MP LWR+BSK or [8]+BSK

Block single point i 10L 2N 3  (14L 2 - 8i2 )N 3

Toeplitz all-L < i < L 8L 3 N 3  5AL3 N 3

Block-Toeplitz single point i 64L 2N 3  8(L 2 - i2)N 3

-plus-Hankel all -L < i < L 64L 3 N 3  51L3 N 3

Table 2: Numbers of MADs required for some specific covariance functions to solve (12)

since g, need only be computed for i > 0, computation of gfj for all i and j requires only half as many

MADs as before, viz. 22L 3. Furthermore, the Levinson algorithm (L) [6] may be used to compute the
3

prediction filters {hij, -L < i,j < L} from kij, at a cost of 4L 2 MADs. The Levinson algorithm can

be propagated in parallel with our algorithm, resulting in an overall fast algorithm for computing the

smoothing filters g.f". from kij. If the covariance is Toeplitz-plus-Hankel, the fast algorithm of [7] may

be used to compute the {hij, -L < i,j < L} from the kij, at a cost of 24L 2 MADs, again in parallel

with our algorithm. However, we no longer have g, = gM_, so the reductions in computation for

purely Toeplitz covariances no longer apply.

The major alternatives to these procedures are the Levinson-Trench-Zohar (LTZ) [10] algorithm

for Toeplitz systems, and the algorithm of Merchant and Parks (MP) [11] for Toeplitz-plus-Hankel

systems. We compare the numbers of MADs required by all of these algorithms in Table 1.
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For a Toeplitz covariance, it can be seen from Table 1 that if g,, for a single point i is desired,

i.e., we wish to compute a smoothed estimate at only one point, then the LTZ algorithm is superior

to ours for small values of i, while ours is superior for large values of i. However, if gs7 for all points

-L < i < L is desired, i.e., we wish to compute smoothed estimates at all points (as would generally

be the case), then our algorithm in conjunction with the Levinson algorithm requires only 2 as many

MADs for large L. Furthermore, for Toeplitz-plus-Hankel covariances, our algorithm in conjunction

with that of [7] requires less than half as many MADs to compute gif for a single point i, and -12

as many MADs to compute gJ' for all i when L is large. Further savings are possible since many

computations (e.g., the updates and the sum in (10)) can be done in parallel.

Other approaches may require still more computation. gM may be updated to iusing the

well-known formula for updating the inverse of a partitioned matrix. However, this requires 3M 2

MADs per update, as opposed to the 8(2M + 1) + 8 MADs required by the BSK identity. Direct

solution of (2) using Gaussian elimination would require 1(2L + 1)3 + (2L + 1)2 MADs for each i.

B. Computational Complexity of the Two-Dimensional Algorithm

We now assume that the observations are {yj,k,-L < J < L, 1 < k < N}, so that updating the
gM+1

smoothing filters fromgN M N2 to i;j,N2 corresponds to adding a "shell" of 2N data points at radius

M+1 3

M + 1. For each i, computation of the boundary points gi,N,;+(M+1),N, requires 6(2M + 1)N MADs

for (16)-(22), and 4 N x N matrix multiplications and inversions for (25) and (26). Updating the other

smoothing filters fromgM ,N to iM+1^ N requires 2(2M + 1)N 3 MADs for (13). Hence the number

of MADs needed to compute L~N1 .,N 2 from the prediction filters for one i and all j is 8(L 2 - i2)N 3,

while the number of MADs needed for all i and j is 5AL3N 3 . Note that these are the numbers for the

one-dimensional algorithm multiplied by N3 , since all operations now involve matrices.

In the sequel, we assume (for purpose of comparison) that L >> N >> 1. If the covariance

kidv,'j,N is block-Toeplitz, i.e. Toeplitz in i and j, then the Levinson-Wiggins-Robinson (LWR) [12]
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algorithm may be used to compute the prediction filters hiNI;,N2 from ki,Nj;,N 2 , at a cost of 6L 2N 3

MADs (recall that the backward predictors are no longer the time-reversed forward predictors, in the

multichannel case). If the covariance is Toeplitz-plus-Hankel in both i and j and N1 and N2, as it is

for an isotropic random field on a polar raster, the fast algorithm of [8] may be used to compute the

prediction filters, at a cost of 24L2 N2 MADs.

The major alternatives to these procedures are the LWR algorithm adapted to an arbitrary block-

Toeplitz system, and a matrix generalization of the Merchants-Parks procedure for block Toeplitz-

plus-Hankel systems. Results axe summarized in Table 2. The savings are similar to those for the one-

dimensional algorithms, except for the even greater savings for block Toepitz-plus-Hankel covariances.

The reason for the great savings here is the efficiency of the algorithm of [8], which requires only 24L 2 N2

MADs to determine the prediction filters from the covariance function: that is negligible compared to

8(L 2 - i2 )N 3 and 51L 3N 3 if L >> N >> 1.

(7. Relation to Continuous-Parameter BSK Identities

It is instructive to examine the continuous-parameter limits of the various equations of this paper.

Let the intervals between points be b4 in the radial direction and 6 = -4 radians in the angular

direction. Introducing a radial weighting factor, as discussed below (12), and taking limits as b, and

bg go to zero results in the following transformations:

1. The discrete normal equations (2) and (12) become Fredholm integral equations. Similarly, the

discrete Wiener-Hopf equation (3) and its two-dimensional counterpart become Wiener-Hopf

integral equations;

2. The smoothing filters become the Fredholm resolvents to the integral operators associated with

the covariance functions;
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M gM3. Using g+ 1  M+l,i = hM+,j, equation (7) becomes

119g
-(x,y; T) = -(g(x, T; T)h(T, y) + g(x, -T; T)h(-T, y))

= -(h(T,x)h(T,y)+h(-T,x)h(-T,y)) (27)

where g(x, y; T) is the smoothing function by which an observation at y in the interval [-T, T] is

multiplied and integrated to compute an estimate at x. Equation (27) is the BSK resolvent iden-

tity (modified from [0, T] to [-T, T]), which was applied to continuous-time smoothing problems

in [3]; 0

4. Similarly, the recursion (13) becomes

9(Ixler, lyle.;T) = - g(Ijxez,Te';T)h(Te', lyle)Tde' (28)

where e,, e. and e' are unit vectors, x = Ix!e=, y = Iyje, and S is the unit circle. Equation (28) is

identical to the generalized BSK identity applied to a multi-dimensional continuous-parameter

smoothing problem in [9];

5. Since 6,,j becomes a continuous-time impulse, the units in (10) and (19)-(20) dominate the other

terms. Hence the computations of the boundary points (10) and (25)-(26) become, respectively, S

g(xy;T) = k(x,y) -] g(z,z;T)k(z,y)dz (29)

g(Ize, lyley; T) = k(zIle., lyley) - j Lg(Izle., Izle.; T)k(Izle2, yle,,)tzdedjz (30)

which agree with equations for computing boundary values that appear in [31-[5] and [9].

Note that although the discrctc equaticrs transfri..- nzto the expected continuous equations, the

forms of the discrete equations are not obvious from the continuous equations.

V CONCLUSION

New fast algorithms for computing the linear least-squares smoothing filters for random processes

and fields have been derived. These algorithms relate the smoothing filters to the prediction filters
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associated with the same covariarce. If the covariance has special structure, fast algorithms such

as those of [6], [7], and [8] may be used to compute the prediction filters; such algorithms may be

propagated in parallel with those of this paper. This can result in significant computational savings.

However, it is important to emphasize that the results of this paper hold for arbitrary covariances,

and do not rely on the existence of such fast algorithms.

In the limit of continuous time, the one-dimensional algorithm reduces to the BSK identity, which

was applied previously to smoothing problems for continuous-time stationary random processes by

Kailath. However, the algorithms are non-trivial discrete and two-dim2nsional generalizations of the

BSK identity. Since both data and numerical computation are inherently discrete in nature, these

algorithms constitute a significant step in the practical application of these smoothing ideas.
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FIGURE HEADING

1. The polar iaster on which the two-dimensional random field is defined withZN = 8.
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Abstract

Recently, fast algorithms have been developed for computing the optimal linear least-squares
prediction filters for non-stationary random processes (fields) whose covariances have (block)
Toeplitz-plus-Hankel form. If the covariance of the random process (field) must be estimated
from the data itself, we have the following problem: Given a data covariance matrix, computed
from the available data, find the Toeplitz-plus-Hankel matrix closest to this matrix in some
sense. This paper gives two procedures for computing the Toeplitz-plus-Hankel matrix that
minimizes the Hilbert-Schmidt norm of the difference between the two matrices. The first ap-
proach projects the data covariance matrix onto the subspace of Toeplitz-plus-Hankel matrices,
for which basis functions can be computed using a Gram-Schmidt orthonormalization. The sec-
ond approach projects onto the subspace of symmetric Toeplitz plus skew-persymmetric Hankel
matrices, resulting in a much simpler algorithm. The extension to block Toeplitz-plus-Hankel
data covariance matrix approximation is also addressed.
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I INTRODUCTION

Some fast algorithms have recently been developed for computing Lhe optimal linear least-

squares prediction filters for non-stationary random processes (fields) whose covariances have (block)

Toeplitz-plus-Hankel form [1, 2, 31. Often the covariance function is not given explicitly, but must

be estimated from the data itself. To utilize these fast algorithms, the estimated covariance function

must have Toeplitz-plus-Hankel structure. The problem can be posed: Given a data covariance

matrix, computed from a data sequence, find a Toeplitz-plus-Hankel matrix that is closest to the

data matrix in some sense.

Several common random processes (fields) have (block) Toeplitz-plus-Hankel covariance func-

tions. For example, the first-order Gauss-Markov process

Xn = axn-1 + wn , n > 1, x0 = 0, Jai < 1, 1)

where w, is discrete white noise with variance a 2, has the Toeplitz-plus-Hankel covariance functioli

hK(i~j) = E[xixj] -1 aa
2 ( a i -jl - aI'+jl)' i,j > 0. (2)

The two-dimensional circularly symmetric Markovian random field on a polar raster

M

X,N = a Z x,-1., + wi, i , < N < M, XON = O, jai < 1, (3)
n=1

where (i,2r V), 1 < N < M are polar coordinates on the polar raster and W,,N is two-dimensional

white noise with variance 2, also has the Toeplitz-plus-Hankel covariance (2). Also, in image

processing a two-dimensional isotropic random field is often modelled [41 as having a covariance

function

(,2 2M )(,2' j, 2r - i 2 +i 2-2:cos(2r(Ni-N 2 ;/M)

_ p ([(i+ ) 2 +( -. l2 l-f(i+i)2 -t-) 2 co (2r(N-N 2 )/M))

. l + ([(i + j) 2 + (i - j) 2] - [(i + j) 2 - (i - j) 2]cos(27r(Nl - N2 )/N))lnp (4)
2



if p , 1, which has a block Toeplitz-plus-Hankel structure. Clearly, for these and similar random

processes (fields), a Toeplitz-plus-Hankel structured covariance estimate will be much more accurate

than a Toeplitz estimate.

For the special case of a wide-sense stationary random process, the estimated covariance matrix

is symmetric Toeplitz. The matrix minimizing the Hilbert-Schmidt norm of the difference between

this matrix and the data covariance matrix is found by averaging the diagonals of the data covariance

matrix, replacing each element being averaged by the average [5]. This is the result of projecting the

data covariance matrix on the vector space of all symmetric Toeplitz matrices, where the projectiol

is defined using the Hilbert-Schmidt inner product.

In this paper we extend this approach to the more general case of Toeplitz-plus-Hankel matrices,

following which the algorithms of [1, 2, 3] may be applied. Since the subspace of symmetric

Toeplitz matrices is a subset of the subspace of symmetric Toeplitz-plus-Hankel matrices, the

errors (in the Hilbert-Schmidt norm sense) will always be smaller than the error using only the

Toeplitz approximation. Unfortunately, the method is more complicated than simply averaging

along diagonals as in Toeplitz approximation. The basis elements of the subspace need to be

computed using a Gram-Schmidt orthogonalization, and there seems to be no simple closed-form

expression for an arbitrary element. However, if we restrict ourselves to the subspace of symmetric

Toeplitz plus skew-persymmetric Hankel matrices, the optimal approximation can be easily derived

by simply averaging along diagonals and antidiagonals. Both methods are developed in this paper.

The extension to approximation for block data covariance matrices is also included. We do not

specifically address other constraints such as positive definiteness, although such constraints can

be incorporated into one of the methods of Section IV, if needed.

This paper is organized as follows. In Section II, we specify the problem, the criterion used.

and the approach employed. In Section III, the optimal Toephitz-plus-Hankel approximation using

basis elements derived from a Gram-Schmidt orthogonalization is derived. In Section IV. the
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optimal symmetric Toeplitz plus skew-persymmetric Hankel approximation using averaging along

the diagonals and antidiagonals is derived. Some examples are also given to demonstrate the C

procedures. In Section V, the results are extended to block data covariance matrix approximation.

Section VI concludes with a summary.

II PROBLEM FORMULATION

A. Hilbert-Schmidt Norm

For any two square real n x n matrices A and B, the Hilbert-Schmidt inner product and norm S

are defined as

< A,B >= Trace[ABT ; IIAl 2  =< A,A >= a, (5)
s1l j=1 S

The problem we will deal with can be posed as follows: Given a data covaXiance matrix R, find the

Toeplitz-plus-Hankel matrix ? such that J)R - kRl is minimized.

The solution to this problem can be easily derived by projecting R onto the subspace of Toeplitz-

plus-Hankel matrices. A set of matrices spanning this subspace is
I1 . . 0 0 1 ... 0 0 0 ... 0 0 . . .. 0

K 0 1 ]4 ..14..... (6)

K " :HV II : lb K 00]
0 1 0 ... 0 0 0 .. 1 0 1 .. .. 0

0 ... ... 1 0 ... 1 0 0 ... ... 0 0 . . 0 0

...... (7)

1 .. . . 0 0 ... ... 0 0 1 ... 0 0 01.

where the 2n - 1 basis function in (6) span the Toepbtz matrices, and the 2n - 1 matrices in (7)

span the Hankel matrices.

B. Projection Approach

If,, are given a set of orthogonal matrices {Qi}k=, then the minimum distance (norm) between

a matrix R and the matrix A in the subspace spanned by {Qilkt l is equal to the distance between

+L' rn t'ix R lrd its projection on thi. subspace, i.e., if hJR - 1RV is minimum, then

k < R,Q, >
R=? ' (8)

<1 <Qi7 Q >
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Consider the special case where the are the matrices in (6). Then, since the {Q,}2-,I

span the subspace of Toeplitz matrices and are orthogonal in the inner product (5), the optimal

Toeplitz approximation for any matrix is to project the matrix on this subspace, and this leads

to averaging along diagonals [5]. If we extend the basis {Qi} to include basis elements for Hankel

matrices as well, the error metric jjR - All will clearly be less than the error for Toeplitz-only

approximation. Let /RT be the optimal Toeplitz matrix approximation to R, and let RTH be the

optimal Toeplitz-plus-Hankel approximation to R. Then the improvement in the error metric is

hJR - RTHII2 = hJR - RfTl 2 - hIiHI2 (9)

where RH is the projection of R on the extension of the basis {Qi, to include Hankel matrices.

We now discuss this basis extension.

III OPTIMAL TOEPLITZ-PLUS-HANKEL
APPROXIMATION

A. Gram-Schmidt Orthogonalization

Unfortunately, while the matrices in (6) are orthogonal, and those in (7) are orthogonal. the

union of (6) and (7) are not orthogonal in the sense of Hilbert-Schmidt norm defined in (5). So while

(6) and (7) span the subspace of Toeplitz-plus-Hankel matrices, they are not an orthogonal basis.

Hence the projection of R can not be computed by averaging along the diagonals and antidiagonals.

To use the projection method, the matrices in (7) must be Gram-Schmidt orthogonalized.

extending the orthogonal basis in (6). If we represent the matrices in (6) and (7) as {Q, and

f Qi.4 2 respectively, then the new orthogonal basis functions Q, can be recursively computed by

Q' = Qs for I = 1,...,2n - 1 (10)

2,-i < QiQk > Qk- < Qi'Q'j >  '
Q =Q'- E <Qk,Qk >-Q " <Q,Qk > Q, fori=2n...,4n-2 1)

k=1 j=2n

B. Solution Procedures

4



Given a data covariance matrix R, the desired Toeplitz-plus-Hankel approximation R can be

computed as follows: 0

1. Adjoin the set of 2n - 1 Toeplitz orthogonal basis elements in (6) to some additional Hankel

orthogonal basis elements computed using the Gram-Schmidt procedure of (10)-(11). This

yields a complete orthogonal basis, say {Q1,Q2* .. O4n-4}. (It is shown in Appendix A that

there are 4n - 4 orthogonal matrices in this subspace.)

2. Compute ? using (8), with k = 4n- 4. The projections on the Toeplitz matrices are found by

averaging along diagonals. The projections on the Hankel basis elements are found by taking

linear combinations of the element of R as follows:

3. To compute < R,Q, > for the Hankel basis elements 2n < i < 4n - 4, regard Qj as a stencil.

Overlay R with 0, and multiply each element of R by the element of Q, directly over it. Note

that for each Qi at least half of the elements are zero.
S

C. Example

Let R =2 1 7
6 4 11

The optimal Toeplitz- plus-tHankel approximation R? can be computed as

i? = - 0 1 0 0 0 o 1 0 0
3 0 0 1 0 0 0 0 l 0

[0011 F00 0 + 6(-0.33) + 1(0.67) + 11(-0.33) -0.33 0 01
+8 0 0 ] + 6 [0 0 0 +0 0.6" 0

+8 [000 6 00 [ 0 0.67 0
[0 0 0 [1 0 0106 0 0 0.33]

+3(0.5) - 7(0.5) + 2(0.5) - 4(0.5) [ "0 10.5 + 6(0.5) -11(0.5)[0.5 0 0 ]
1 [C -0.5 0 J 0.5 [0 0 - 0. 5J

16 3.5 81

1.5 1 6.5
6 4.5 11
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The Hilbert-Schmidt norm of the error for this Toeplitz-plus-Hankel approximation is equal to

1. For Toeplitz-only approximation, the error norm is 7.75. The reduction from h[R - ?T11 = 7.7.5

to 1IR- RTHII = 1 is due to IIRHII = 7.68 in (9). Note that the elements of Rare very close to those

of R. This is not surprising, since for this example n = 3, and there are 4n - 4 = 8 basis functions.

only one shy of number of the degrees of freedom required to completely specify an arbitrary 3 x 3

matrix.

IV OPTIMAL SYMMETRIC TOEPLITZ PLUS
SKEW-PERSYMMETRIC HANKEL APPROXIMATION

The major computational complexity of the above method lies in the Gram-Scbmidt orthogonaliza-

tion procedure. We now show that if we restrict ourselves to a specific class of Toeplitz-plus-Hankel

matrices, we obtain a much simpler algorithm which involves simply averaging along diagonals and

antidiagonals of the data covariance matrix. This is done in two parts: First, we use a matrix iden-

tity to transform this special case of the Toeplitz-plus-Hankel approximation into the more familar

Hermitian Toeplitz approximation problem. Second, we show that this problem is equivalent to

averaging along diagonals and antidiagonals.

A. Transformation to Hermitian Toeplitz Approximation

For simplicity, we only consider the case where n is even. Define I, as the n x n identity matrix.

and .J, as the n x n exchange matrix with ones on the main antidiagonal . It has been shown in

[6] that for any n x n Hermitian Toeplitz matrix HT,

](1-j)In (I+j)Jn_ (I+j)In (1-j)Ja 1U= --21 T 2 ( 12)

2(1 + j)j2 (I ] )H 2 (1-j)Jn (1+j)I(

will transform HT into a sum of real Toeplitz and Hankel matrices

HT = U(HT)UH = T (Toepitz matrix)+ H (Hankel matrix) (13)

where T = Re[HT] and H = Im[HT] . Jn. Since HT is a Hermitian Toeplitz matrix, T is a

6



symmetric Toeplitz matrix and H is a skew-persymmetric Hankel matrix with all zero elenioiit. t,

the main antidiagonal.

Since our concern is to obtain the optimal Toeplitz-plus-llankel approximation. we will rover,,

the above procedure. More specifically, given any data covariance matrix R, we want to find thit

optimal Toeplitz-plus-Hankel approximation R. where the Toeplitz and Hankel matrices have the

same structure as those of (13). Then

min IlR - RI = min II(TH(R - R)UII = min IIUHRU - IITII (14)
A fA HT

where IT fitH ' is a Hermitian Toeplitz matrix. and we have used the fact that unitary

transformation is a one-to-one mapping that does not change the Hilbert-Schmidt norm.

We have thus transformed the problem from optimal Toeplitz-plus-Hankel approximation to

optimal Hermitian Toeplitz approximation, which can be easily solved [7]. More specifically, given

a n x n matrix C = [c,,], its optimal Hermitian Toeplitz approximation C can be computed as

1 Z + I ;V1 = I. i k = - i
ct = - E ckk; c(,+k) - - k) (Cm(,-+k) + C(rn,+k),n k l2 ( n -k ) ,= Ik=l

where * denotes complex conjugate and ,, = c'. Alter the approximation (Toeplitzation). th,

resulting Toeplitz-plus-Hankel approximation is

U(HT)UH - T + H 1 1

The overall procedure to find the optimal symmetric Toeplitz plus skew-persymmetric Hankel

matrix R? (Toeplitz-plus-Hankelization) to the data covariance matrix R can be summarized as

follows:

Given the data covariance matrix R

1. Perform forward transformation C = UHRU;

2. Perform Hermitian Toeplitzation of C - C using (15);

3. Perform inverse transformation O = UC1H

7a



B. Example
2 2 1 5 1

Let R K 3 6
1 2 4 3
2 3 6 8j

5 +1.53 .4- 2-2) 3.5- 3J1

(i) _ HR [ 2 25 2.5 +0..S3 2.5- 1.5 32.5-J
3.5 + j 2.5 + I.5j 2.5 - 0.Sj 2 - 2-5
3.5+3j 2+2J 4+j 5- 1.5j

3.75 2.83- 1.671 2.75 - 1.51 3.5 - 33

(ii) Hlermitian Toeplitzation HT = 2.83 + 1.67j 3.75 2.83- 1 6
7

. 2 .75 - 1.S2
2.75 + 1.5) 2.83 + 1.67j 3.75 2.83 - 167

3.5 + 33 2.75 + 1.5j 2.83 + 1.
6 7

j 3.7.5

F3.75 1.zs3 2.75 3.5 -3 -1.5 -1.67 0 0.75 1.33 1.08 3 5 1
011) (I T)2.&3 3.75 2.83 2.75 -1.5 -1.67 0 1.67 1.33 2.08 2.83 4.-12

2,75 2.83 3.75 2.83 + 1 0 1.67 1.5 [1.08 2.83 5.42 1 33

T5 275 2.83 3.75 0 1.67 1.5 3 3.5 4.12 -1.33 6 75

Toeplitz matrix Hankel matrix

The Hilbert-Schmidt norm of the error for this Toeplitz-plus-Hankel approximation is equal to

-1.6. For Toeplitz-only approximation, the error norm is 8.05. The main reason for using these trans-

formations is that the Hermitian Toeplitzation problem can be easily solved by simply averaging

the elements along diagonals. However. to do th;K. e recd four complex matrix multiplications for

the forward and inverse transformations. In the next section we show that this procedure reduces

to simple averaging operations along the diagonals and antidiagonals.

C. Modified Projection Method

Consider the following (2n - 1) n x n matrices:

0 01 ..... 0 0 ... ..o1...... 1 0 1 ... 0 U

1 '.1 0 ".0 -

1). . 0 ... 1 0 1 .. . 0 -I .. 0 0 0 -1

17)

We now show that the above matrices are mutually orthogonal in the inner product (5), and

also span a subspace in which every element can be represented as the sum of a symmetric Toeplitz

matrix and a skew-persymmetric Hankel matrix.



0

Theorem 1 The 2n - 1 matrices in (17) are mutually orthogonal, and hence form a st of bnl,

flowntis for a ,;ubspace.

Proof: see Appendix B.

Theorem 2 A matrix can be represented as the sum of a symmetric Toeplit: matrix an7d a .skt u-

ptrsymmetric Hankel matrix if and only if it lizs in the subspace spanned by the basis functior., '

Proof: see Appendix C.

From the above theorems, the optimal approximation R of any matrix R by the sum of it

-vmmetric Toeplitz matrix and a skew-persynmetric Hankel matrix can be computed as
S

<R. T, > < R,H, >T, H,
Z=o <  T,T, > = < H,H, >

averaging along diagonals averaging along antidiagonals

Both the modified projection method and the transformation method compute the pro jectio1l 0

onto the subspace of symmetric Toeplitz plus skew-persvmmetric Hankel matrices. as shown 1,K

I1-1). Since this subspace is convex, the projection is unique. Hence both methods are equivalet.
0

This can also be shown by going through the transformation method algebraically, and showiii1

that the result is the modified projection method.

D. Example

Consider the same R = I1 2 4 3

2 3 6 8

+ 0 0 0 01 1 0101
2 4- 1 + 4+ 8 0 1 0 0 24- 1.4-&-+ 1 + 2+6 1 0 1 0 1+6+ 1+ 3 0 0 0 1

1 0 0 1 0 6 0 1 0 1 4 1 0 0

0O 0 01 +0 
1 ]L 0o

0 0 0 1 0 0 1 0 01

[ 0 00 0 1+1+1-6-4-3 0 1 0 1 2+1-3-6
2 0 0 0 6 1 0 -1 0 4 0 0 0 -I

1 0 0 0 0 -1 0 0 0 - O

9



I G 0) 0 1 0.7S 1.33 1.08 3.
2 -8 0 0 0 0 1.33 2.08 2.83 4.42

2 0 0 0 0 1.08 2.83 5.42 4.33
0 0 0 -1 3.5 4.42 4.33 6.75

This example verifies that both the transformation method and the modified projection method

produce the same results. However, the latter method only requires averaging along diagonals and

a~tidiagonals, which is much easier than the matrix multiplications.

Incorporation of additional constraints such as rank constraint and positive definiteness has

been studied in the Hermitian Toeplitz case [81. These additional constraints can easily be incor-

porated into the Toeplitz-plus-Hankel case in transformation method, since they are preserved by

the transformation (13). This is why the transformation method was presented separately.

V OPTIMAL SYMMETRIC TOEPLITZ BLOCK-TOEPLITZ
PLUS SKEW-PERSYMMETRIC HANKEL

BLOCK-HANKEL APPROXIMATION

Block data covariance matrices occur in many multichannel and multidimensional problems [9]. To

utilize the fast algorithm developed in [3] for computing the optimal prediction filters, we need to

find an optimal block Toeplitz-plus-Hlankel approximation to a block data covariance matrix.

A. Multichannel Generalization of Previous Results

We focus on the symmetric Toeplitz block-Tueplitz plus skew-persymmatric Hankel block-

Hiankcl case with n p x p blocks, where n is even. If a matrix R has such structure. then it

can be represented by

[ 0 R_ ... ,J ... RoJ

R po " + i0 J

I._ I ... o oJ ... k-lJ

symmetric Toeplitz block-Toeplitz matrix skew-persymmetric Hankel block-Hankel matrix
(19)

10



where R. = T, = -- _Ti, and both R?, and Ai are p x p Toeplitz matrices for -(n - 1) < i <

n - 1. For this type of matrix, we can extend the unitary transform (13) from [6] to the following

multichannel case:

S(-j4p ... 0 0 .. + i)JP

U 1ZK[ (1+-)Ju (..i). 1 (1- AIp ( +j)JP 0 (20)
0 + J-2 0 - A1.2_" 2 0 ... (1+ )J (1-j)I ... 0

L( + j)Jp 0 0 ... (1 -)P

and we also have

11 +1 (1 +j)Ij. (1 -j)J, _ .

U U = _2 2 (21)
(0 - j)J-. (1 + j)I.

2 2

Then
Ro ... R -(n-l 1)

U-1RU Ro (22)

R,_-1 ... R0

where Ri 1?, + 'f?,. We have Ri = RH by the assumption of Pi f T, and R?, _/pT so that

the block matrix resulting from the transformation is a block Hermitian Toeplitz matrix.

The procedures for computing the optimal symmetric Toeplitz block-Toeplitz plus skew-persymmetric

Hankel block-Hankel matrix are the same as before, except now all the matrices become block ma-

trices.

To avoid the matrix multiplications, the projection method is applicable, with some modifi-

cations of the basis functions. We can represent the p x p matrices in (6) and (7) respectively

as

(Ti]jk =k--, l ; ik = 6 k+i-(p+1-,) , for all 1 < j,k < p, and - (p - 1) i < p - 1 (23)

where 6, = 1 if i = j and 6,1 = 0 if i j. The n symmetric Toeplitz matrices and the n- I

skew-persymmetric Hankel matrices in (17) can then be respectively represented as

[To],, = bi,; T1, b, + _ 1 < i,j < n. 1 = ,...,n - 1 (24)

11
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[H~ij = 1-i) - z+j-(,+1+l), 1 < i~j < n, 1 = 1,..... n - 1 (25

Then the basis functions for the subspace of symmetric Toeplitz block-Toeplitz matrices are

Toi.iTo; To0 (T+T-); T®Tj for I = 1,... ,p- 1; = 1,...,n- 1; j= -(p- 1),...,p- 1 (26)

and the basis functions for the skew-persymmetric Hankel block-Hankel matrices are

(J -To)T(/lH-H-); Hio/Hj forl= i...,p-l; i= 1....-i; j = -(p-1),...,p-1 (27)

where is the modified outer product operation, defined as A - B = {am,,B} if n > Tf. and

{an(JBJ)} if n < m, where am,, is the (m,n)-th element of matrix A. Since all the elements in

T,(T , ) and Hi(Ti) are either 0 or 1, the outer product is a simple operation in this special case. These

two sets of matrices are easily verified to be orthogonal by following the same steps used in Theorem

1. The resulting approximation for a symmetric Toeplitz block-Toeplitz plus skew-persymmetric

Hankel block-Hankel matrix is equivalent to projecting this block matrix on the subspace spanned

by the basis functions in (26) and (27), which leads to averaging the diagonal and antidiagonal

blocks, and then the diagonals and antidiagonals of each block.

B. Example

5 2 4 9 3 1
8 4 2 -, 6 12

Assume R = 1 9 3 6 2 4
1 2 3 4 2 8
2 3 14 6 5 2

4 7 3 5 6 15

Then, after forward transformation, block Hermitian Toeplitzation, and inverse transformation (or

using the projection method directly), we obtain the optimal approximation R =

6 - 4.5 5.375 4.25 6 2.5 -. 5 0.5 -2 0.75 -2.5 0
4.5 6 4.75 5.375 4.5 6 0.5 -0.5 0.75 -1.75 0 2.5

5.375 4.75 6 4.5 5.375 4.25 -2 0.75 -2 0 1.75 -0.75

4.25 5.375 4.5 6 4.75 5.375 + 0.75 - 1.75 0 2 -0.75 2

6 4.5 5.375 4.75 6 4.5 -2.5 0 1.75 -0.75 0.5 -0.5
2.5 6 4.25 5.375 4.5 6 0 2.5 -0.75 2 -0.5 5

The fast algorithm of [3] was designed for linear prediction on a polar raster. Since covariance

functions on a polar raster are periodic in the angular variables, the associated covariance matrices

12S



will have circulant blocks. The basis (26)-(27) should be modified to

Ti':1To; T.®(7j+ T(p-,)) for i=0 .. n- 1; j= 1 ..... p- 1 (28)

for the Toeplitz block-circulant matrices and

Hi0(J'To); HO(H,+fl_(P_j)) fori= 1....n-1; j= 1,...,p-1 (29)

for the Hankel block-circulant matrices. These basis functions are easily shown to be orthogonal.

so the projection on this basis can again be found by averaging along diagonals and antidiagonals.

VI CONCLUSION

In this paper, the well-known problem of "Toeplitzation" of a data covariance matrix has

been extended to Toeplitz-plus-Hankel approximation of matrices. The general solution can be

computed by projecting the given data covariance matrix on the space of Toeplitz-plus-Hankel

matrices. Although the basis functions for this subspace can be recursively generated, as the

size of the matrix grows large, the Grain-Schmidt orthogonalization requires much computation.

To obtain a simpler algorithm, we can restrict ourselves to the subspace of symmetric Toeplitz

plus skew-persymmetric Hankel matrices, for which the optimal approximation can be efficiently

computed by averaging along diagonals and antidiagonals. We also show that the same result can

be achieved by a unitary transformation along with Hermitian Toeplitzation; the latter algorithm

permits additional constraints such as rank constraints and positive definiteness.

For the multichannel and multidimensional problems, approximation for a block data covariance

matrix is also considered. The optimal symmetric Toeplitz block-Toeplitz plus skew-persymmetric

Hankel block-Hankel matrix can be derived either by using the unitary transformation along with

block Hermitian Toeplitzation, or the more efficient projection method.
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APPENDIX A

Prove that there are only 4n - 4 matrices left in (6) and (7) after the Gram-Schmidt orthoy-

onalization.

Since the matrices in (6) and (7) span the space of Toeplitz-plus-Hankel matrices, the number

of orthogonal matrices in this subspace is equal to that of the linearly independent matrices in (6)

and (7).

We use the same notation as in (23) for Ti and fi, with the replacement of p by n. Since

T, is a set of linearly independent (also orthogonal) matrices, we adjoin {T:>'ll-

with the elements in }_(, in the following order : /t0, H1,/.... . Hl,/._( 2, 1 ). If the

newly added element is linearly dependent on the previous matrices, then we remove it. So the

number of matrices remaining form a set of linearly independent matrices.

i a matrix is linearly dependent with a set of matrices, then we must be able to find a sequence

of lines such that each non-zero element in these dependent matrices is crossed by these lines at

least twice. Note that the non-zero elements in matrices of (6) and (7) are some specific lines in

either NE-SW or NW-SE directions. It is easy to check that if the index j is even (odd), then for

the above condition to hold the elements fl+(,-I) (/"±(n-2)) are always required.

The only other possibilities are H(--2) and H-. If n is even, we have

E ,= Z T, (30)
i even i odd v1 Vi

Reordering the terms, we get

H-n2 = E -:~ ; fL-n-l) =ZE~t- FZ H1  (31)
i odd i even,t*-(n-2) Vi i*(,-1)

which means that f/-(0- 2 ) and H-(- 1) are linearly dependent on the other matrices. If n is odd.

simply interchange "even" and "odd" in the above argument. Thefore, there are 2(2n - 1) - 2 -

4n - 4 linearly independent matrices in (6) and (7). U

APPENDIX B
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Proof of Theorem 1

We use the same notation as in (24) and (25) for T, and Hi. It is easy to verify that < Tm. T, >

0 and < Hm,HI >= 0 in the sense of (5) if m $ 1 (see [5]). Therefore, we only need to show that

Tm and HI are mutually orthogonal. From (24) and (25), we have ( m $ 0)

n n

< Tm, H, > = Trace[TTHt] = Z '[Tji,k[Hj1k,i
i=1 k=1

n n

E Z Z V-k-rn + bk-i-m]1[bk+i-(n+1-1) - bk+i-(n+l+1)]
i=1 k=1

- I: -i -k-mr 5 k+i-(n+i+1) + bi-k-mbk+i-(n+i-1) - 6k-i-m 6 k+,-(n+1+1) + bk-i-mbk+i-(n+1-1)
i=1 k=1'

Point A Point B Point C Potnt D (32)

So the solution of (32) can then be determined by the intersections of these four straight lines, i.e..

i-k = m, k-i= m, k+i= n+1+1, and k+i = n+ 1-1, asshownin Figure 1. If m 5 0,

by symmetry these four lines either do not intersect at all (A = B = C = D = 0), or have four

intersections, for which A = B = C = D = 1. In both cases, (32) is equal to zero. If m = 0. then

there are always two intersections between the lines k + i = n + 1 + 1, k + i = n + 1 - 1, and i = k.

and the result is still equal to zero. Therefore, Tm and HI are mutually orthogonal, and these 2n - I

matrices form a set of basis functions. 0

APPENDIX C

Proof of Theorem 2

(a) "If' part: Any vector in this subspace can be represented as F_'-o aT, + E-Z11 aHi. It

is obvious that the first sum is a symmetric Toeplitz matrix, and the second sum is a skew-

persymmetric Hankel matrix. (b) "Only if' part: If a matrix C can be represented as the sum of 5

symmetric Toeplitz matrix T and skew-persymmetric Hankel matrix t, then C can be represented

as C = IU1 [T]iiT-i + j('l [Hl(.-)Hi. Hence this matrix lies in the space spanned by the basis

functions of (17). U
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Abstract

A zero-mean homogeneous random field is defined on a discrete polar raster. Given sample
values inside a disk of finite radius, we wish to estimate the field's power spectral density using
linear preliiti-n Issues arising here include estimation of covariance lags, and extendibility of a
finite set of lag estimates int-, a positive semni-definite covariance extension (required for a meaningful
spectral density). We give a generalized autocorrelation procedure that guarantees positive semi-
definite covariance estimates. It first interpolates the data using Gaussians, computes its Radon
transform, and applies familiar one-dimensional techniques to each slice. Some numerical exampies
are provided to justify the validity of the proposed procedure. We also propo- a correlation
matching covariance extension procedure that uses the Radon transform to exteno , given set of
covariance lags to the entire plane, when this is possible, and discuss circumstances for which this
is impossible.
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I INTRODUCTION

Iii many applications, such as tomographic imaging problems solved by filtered back-projection Il.

and spotlight synthetic aperture radar [2], data are collected on a polar raster of points, rather than

on a rectangular lattice. To process such data, e.g. remove undesired frequency components; we need

to estimate the power spectral density for data defined on a polar raster.

The obvious approach of simply estimating the 1-D power spectral density independently along

each slice will give an incorrect answer. since the 2-D Fourier transform on a polar raster is not gl'en

by the 1-D Fourier transform along each slice. One approach, the 2-D periodogiam, is to intcrpolate

the data onto a rectangular lattice, and then take the 2-D Fourier transform of the resampled values.

We note here that for a rectangular raster, 1-D spectral estimation techniques have been applied, first

by columns, then by rows, in some "separable" 2-D spectral estimators [3, 4]. While these separable

estimators do compute the 2-D Fourier transform correctly, they neglect correlation between rows and

columns.

A major problem with the 2-D periodogram is the poor resolution of spectral estimates based on

a small amount of data [5]. This is due to truncation of the covariance lags, since only a finite amount

of data barnples is available. To overcome this difficulty in l-D, parametric modeling is used to extend

the finite set of covariance lags. Linear prediction (AR modeling) is the most common approach due

to its simplicity and high-resolution spectral estimates. New contributions of this paper include the

following:

1. An "autocorrelation" 2-D spectrum estimation procedure which uses the Radon transform to

transform-the 2-D problem into an uncorrelated set of 1-D spectrum estimation problems. It is an

autocorrelation method in that all unknown values are windowed to zero, as in the autocorrelation

method for 1-D linear prediction, for computing the Radon transform. It differs from a previou"

Radon-based 2-D spectrum estimation procedure [6] in the following three ways:

(a) The Radon transform is computed in a different manner that ensures a non-negative esti-
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mate of power spectral density:

(b) The use of 1-D linear prediction to obtain finer-resolution 1-D spectrum estimates along

each 2-D slice:

(c) Discussion of the effects of the 1-D covariance extension along each slice on the 2-D covari-

ance (viz. correlation matching holds in the Radon transform domain, but not in the 2-D

domain);

2. A new 2-D covariance extension procedure that extends a set of 2-D covariance lags defined in

a finite disk to the entire plane, when this is possible. Unlike the first procedure, this procedure

has the correlation matching property of preserving the given covariance lags in the 2-D domain:

3. A discussion of various interpolating functions used to compute the discrete Radon transform,

and implications of their use for 2-D spectrum estimation.

A. Review of 2-D Linear Prediction on a Rectangular Raster

Many aspects of 1-D linear prediction have been shown to generalize to the 2-D case defined on

a rectangular raster [7]. For example. stability and minimum phase prcperties are still related to

reflection coefficients [7]. However, two vital aspects do not generalize to the 2-D case:

1. Causality, which has a clear definition in the 1-D case, has been defined in at least two different

ways on a 2-D rectan. ar raster. Asymmetric half-plane causality [7] splits the 2-D raster into

"past" and "future" half-planes; the 2-D AR model has support in the "past". Quarter-plane

causality [8] means that the 2-D autoregressive (AR) model has support in a quarter-plane,

e.g. to the "southwest" of the present point. Since quarter-plane causality is a special case of

asymmetric half-plane causality, we consider only the latter in the sequel.

2. An essential feature of 1-D linear prediction is covariance extendibility: Given a finite positive

semi-definite (psd) set of covariance lag estimates, it is always possible to extend this set into an
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infinite psd set of covariance lags. This is important since a non-psd set of covariance lags will

lead to negative values in the estimated power spectral density. However, this property does not

extend to the 2-D case on a rectangular raster.

For asymmetric half-plane causality, the region of support for the 2-D AR model is i.,Inite. s that

truncation is clearly necessary. This truncation is the cause of much of the difficulty in 2-D linear

prediction; it results in a discontinuous region of support, and even in the l-D case a discontinuous

region of support creates nroblems. In ([71, p. 59) a 1-D example with discontinuous support results

in a non-minimum phase AR filter that does not satizfy the correlation-matching property. Indeed. a

fhiite set of 2-4 psd covariances with discontinuous support may not even have a psd extension over

the entire plane [9].

The cause of the difficulties can be seen by examining the Yule-Walker equations for determining

the AR filter coefficients from the covariance lag estimates. These equations have block-Toeplitz form,

so that the number of covariance lag estimates exceeds the number of AR filter coefficients (see [.5). p. •

495 for a specific example). This has two implications:

1. An infinite number of different covariance lag estimates can be associated with the same AR

model. Hence the correlation matching property, which guarantees that the spectral estimate

will be consistent with the finite set of lag estimates., no longer holds:

2. Covariance extension from a finite set of estimated lags requires recursion using the 2-D AR •

model, over an asymmetric half-plane. Since the region of support is infinite, and only a finite

set of lags estimates axe given, truncation is necessary, and this may result in a non-psd covariance

extension.

B. 2-D Linear Prediction on a Polar Raster

In this paper we address, for the first time, similar questions for a random field defined on a polar

raster. On 71 polar raster, causality is defined unambiguously in terms of increasing radius; the region

3



of support for an AR model at any point on a given circle is the disk inside the circle. Since this disk

is a contnuous region of support, the result of [9] is inapplicable.

Indeed, we give an explicit procedure which inputs discrete sample values inside a finite disk, and

outp ts a set of psd covariance lags. We call this covariance extension, athougi -trictly speaking we

are not extending a set of covariance lags, but creating an extended set of psd lags from a finite set

of data. In Section VI we propose another algorithm that explicitly extends a finite set of 2-D lags to

the entire plane, provided this is possible.

In this paper, we prcpose using the Radon transform to decouple the 2-D spectral estimation

problem into a set of l-D problems. The projection-slice theorem tells us that there are two ways to

compute the 2-D Fourier transform: (1) we can either compute it directly by taking the 2-D Fourier

transform: or (2) we can take the Radon transform first, and then apply the 1-D Fourier transform

along each direction in the spectral domain. This suggests the following algorithm for 2-D spectral

estimation: (1) take the Radon transform of the data: (2) extrapolate the 1-D covariance lags in the

Radon transform domain along each direction, using 1-D linear prediction; and then (3) superposing

tl.e 1-D spectral estimates to form a 2-D spectral estimate, defined on a polar raster.

Note that the available data are discrete samples, but the projection-slice theorem only holds for

continuous data, so we need to find some interpolating functions to interpolate the discrete data.

Since the sampling theorem on a polar raster is very different from that on the rectangular lattice,

the interpolating functions for a band-limited signal are quite complicated [10, 11]. In this paper, we

propose using gaussian interpolating functions to compite the Radon transform of the given discrete

data. A complete discussion of the merits of gaussian vs. other interpolating function is also addressed.

It should be noted that our proposed "interpolating" function does not agree with the original specified

discrete data points: indeed it should more properly be termed a "defocusing" function. To make it

easier for the reader, we give "interpolating function" a definition slightly different from the usual; see

Section III.



This paper is organized as follows. Section II proposes a psd covariance extension method using

the Radon transform. Section III discusses the choice of interpolating functions to transform the

discrete data samples into continuous data. The analytically explicit procedure using the gaussian

interpolating functions is then given in Section IV. This procedure can be used to provide a high-

resolution spectral estimate for points defined on a polar raster. Some numerical examples are given

in Section V. In Section VI, we propose a 2-D psd covariance extension technique that also has the

correlation matching property, provided that a 2-D psd extension exists. Section VII concludes with

a summary.

II 2-D LINEAR PREDICTION AND PSD COVARIANCE
EXTENSION ON A POLAR RASTER

A. Problem Formulation

The problem considered is as foUows. A set of data is defined on a polar raster. We are given

discrete sample values {f(i,m),O < i < N,1 < m < M} at the points (i6,27rm/M) on the polar

raster, as shown in Figure 1; i is integer radius from the origin, 6, is the radial spacing, and m is

the integer index of angular position, corresponding to an angle of 27rm/M radians. The goal is to

compute a psd set of covariance lags everywhere in the plane.

The assumption of discrete samples is required, since any numerical procedure will ultimately

require discretization. We point out here that if the data is generated from an isotropic random field

which is bandlimited in wavenumber to a disk of radius ar, and M > 27rN, then the discrete sampled

points {f(i,m),O < i < N, 1 < m < M} may be interpolated to give the exact value of the random

field everywhere in the disk of radius N [101.

B. The 2-D Radon Transform and Projection-Slice Theorem

In order to decouple the 2-D linear prediction problem into a set of 1-D linear prediction problems

along each slice, it is necessary to first compute the Radon transform of the data. The 2-D Radon
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transform is defined as

j(t,o) = f(XY)} f s(x. y)(t - x cos0 -ysin O)dx (1)

so that the Radon transform is the set of projections or line integrals of f(x. y) along all possible lines.

An important property of the Radon transform is the projection-slice theorem, which states that

the 2-D Fourier transform F(k,O) in polar coordinates of f(x,y) can be computed by taking 1-D

Fourier transforms along each slice of the Radon transform of f(x, y) so that [12]

F(k,O) = Ff{f(x y)} = .,_ {f(t,0)} (2)

where t-k denotes a 1-D Fourier transform taking t into wavenumber k, and f(t,O) is computed

using (1). A discrete version of the projection-slice theorem has been used to develop a fast algorithm

for computing 2-D discrete Fourier transforms: first the discrete Radon transform is computed, and

then 1-D discrete Fourier transforms are computed along each slice of the Radon transform [13]. Since

both transforms are parallelizable, this can save computation time.

For a homogeneous random field, it may be shown that the Radon transform is a whitening trans-

form: each slice of the Radon transform of a homogeneous random field is uncorrelated with each

other slice [14]. This suggests that the 2-D linear prediction problem can be decoupled into a set

of independent 1-D linear prediction problems by Radon transforming the data. This approach was

taken in [6]; however, [6] did not consider the problems of linear prediction on a polar raster, from a

finite disk of data, correlation matching, and psd covariance extension.

C. Procedure for 2-D Covariance Extension

Clearly computation of the Radon transform from the data will require interpolation. In the

next section, we will discuss how to choose an interpolating function to transform data from the

discrete domain into the continuous domain. At present, for convenience we assume that the data are

continuous and inside a disk of finite radius.
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Since we have data only inside a disk of finite radius, we propose an "autocorrelation" method

in which the unknown data are windowed to zero for purposes of computing the Radon transform.

The Radon transform is then computed analytically. Finally, the 1-D autocorrelation form of linear

prediction is used on each slice of the Radon transform to get a set of psd covariance estimates.

The term "autocorrelation method", in the linear prediction sense of the term, is justified due to

the following two properties of the Radon transform:

1. Let i(t,o) be the Radon transform of the random field x(r,0) (using polar coordinates through-

out). Note from (1) that for any T > 0 {f(t,¢4),t > T} depends only on {x(r,0),r > T}. Hence

windowing the data to zero for i > N is equivalent to windowing its Radon transform to zero

for t> N;

2. Using (2), it is clear that

z{f(x, y) * *g(x,y)} = f(t,B) * (t,0)

where ** denotes 2-D convolution and * denotes 1-D convolution in t. Setting f(xy) = x(r,O)

and g(x, y) = x(r, -0) in (2) shows that the following two methods are equivalent:

(a) Windowing the Radon transform of the data to zero, and then forming the covariance lag

estimates from these Radon transforms;

(b) Forming the covariance lag estimates directly from the windowed data (the autocorrelation

method of linear prediction), and then Radon transforming the lag estimates.

III COMPUTATION OF DISCRETE RADON TRANSFORM

S

In this section we discuss the computation of the Radon transform of a function defined on a

discrete lattice of points. We call such a transform a discrete Radon transform. The discrete Radon

transform will be used in the spectral estimation technique proposed below. To facilitate comparison

of our method with various other definitions of the discrete Radon transform, we consider first a
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rectangular lattice of discrete points, and then a polar raster of discrete points (the latter is the actual

case of interest).

4. Rectangular Lattice

Consider a function fj defined on a rectangular lattice of points (i,j), where i and j are integers

such that -M < i,j < M for some M. Our goal is to define and compute the discrete Radon transform

of fj such that the following properties hold:

1. Computation of the discrete Radon transform requires as little time and storage as possible:

2. The Radon transform possesses the pro ection-slice property;

3. The Radon transform f(t, O) of a psd discrete 2-D function fi,, is psd in t for each 0.

Note that ease of invertibility of the discrete Radon transform is not an issue here, since the

projection-sice theorem states that the 2-D spectrum on a polar raster is immediately determined

from the 1-D spectra of the Radon transforms. Hence ease of computation of the forward transform,

not the inverse transform, is significant.

Our approach is to interpolate fi.3 into a continuous function f(x, y), defined as

M M
f (x, y)= : 1: fjo(x -i, y-jA (3)

i=-M J=-M

where ¢(x, y) is defined here as an interpolating function. The discrete Radon transform f(t, 0) of fi,

is then defined to be the same as the Radon transform of its interpolation f(x, y), which is

M M

f(t,O) = R {f(x,y)} = E E fij1z{O(x - i,y - j)}
i=-M j=-M

M M

E Z Z fEI(t- icos0- jsin0,9) (4)
i=-M4 j=-NM

where Zj{(x, y)} = <(t,O). This definition clearly possesses the projection-slice property. To follow,

we consider some common interpolating functions, for more other interpolating functions, see [15].

Some choices of interpolating function ¢(x, y), and the resulting discrete Radon transforms, are:
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1. Impulses

Choosing for the interpolating function the 2-D impulse function P(x, y) = 6(x)b(y) results in

Af M
E(t,9)= E E fij6(t-icos9-jsin9) (5)

i=-M j=-M

since 7?{6(x)6(y)} = 6(t).

For this choice of interpolating function, the discrete Radon transform is zero unless the line passes

precisely through a lattice point; hence f(t, 9) is zero except for a finite set of t and 0 (excluding values

found from only a single lattice point). This makes this choice unsuitable for 2-D spectral estimation.

This is the discrete Radon transform defined by Beylkin in [16]. Note that on an infinite 2-D lattice

of integers (M - oc), the set of lines through the origin for which the discrete Radon transform is

non-zero is precisely the set of lines with rational slopes.

2. Square Pixels

A common method of computing the Radon transform of a sampled function is to assume that

fij represents the value of the square 1 x 1 pixel centered at coordinates (x,y) = (i, j). The Radon

transform is then computed as follows. For each line, multiply the length of the line within a pixel by

the value fj, of that pixel, and sum over all pixels through which that line passes. This method was

used in [6] to compute the Radon transform for 2-D spectral estimation.

This pixel assumption is clearly equivalent to using for the interpolating function 6(x, y) =

rect(x)'ect(y), where rect(x) = 1 if -1/2 < x < 1/2, and = 0 otherwise. The resulting discrete

Radon transform is then

M M

(tO) E : fi~j (t - i cos - jsinO0, 0)
i=-M j=-M
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where ([12], p. 62)

cos G+sin 0+2t if - sin 0 - cos 0 < 2t < sin 0 - cos 0
2sinOcosO '

I if sin 0- cos 0< 2t < cos 0- sin 0

O(t,O) = T?{rect(x)rect(y)} = cS, (6)
cOsO+sinO-2t if cos 0 - sin 0 < 2t < cos 0 + sin 02 sin 0cos 0

0, otherwise.

It is clear that this requires a considerable amount of computation, in violation of condition #1

above. It should be noted that the value of this definition of discrete Radon transform is that its inverse

Radon transform may be computed by solving a linear (but large) system of equations. However, this

is not valuable to us in the context of 2-D spectral estimation. since the 2-D spectrum can be found

from the 1-D spectrum immediately using the projection- slice property. Hence there is no reason to

make the choice uf imuerpoiating functions implicitly made in [6]. A more serious problem is that there

is no guarantee that the resulting 1(t,0) will be psd, in violation of condition #3.

3. Sinc Functions

Regarding fij as samples of a continuous function bandlimited in radial wavenumber to [-7r, r]

(note that this may or may not actually be the case), the choice Op(x,y) = +y leads to
V/ 2 +y2

M M

) (t,)= E E fijsinc(t- icos0- jsin0) (7)
i=-M j=-M

since P{ 0.5Jz, x 2 +y 2 ) = sinc(t).

This discrete Radon transform is easily computed, satisfying condition #1. The projection-slice

property (condition #2) is automatically satisfied. Condition #3 that f(t,O) be psd in t may not

seem at first glance to be satisfied, but if fij is psd, and regarded as samples of a bandlimited function

sampled above the Nyquist rate, then its interpolation f(x,y) is also psd. This means that the 2-D

Fourier transform of f(x,y) is non-negative, and by the projection-slice property the 1-D Fourier

transform of f(t, 9) is non-negative for each 0, so that f(t, 0) is psd, as required.

I f(t,9) can also be seen to be psd as follows. First, consider the j = 0 terms. These can be

interpreted as the interpolation of sampled values f:.o using a discretization length A., cos 9 < 1
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01

(corresponding to a sampling rate above the Nyquist rate). Repeating this argument for each value

of j, i(t,0) can be interpreted as a sum of delayed signals, each of which is bandlimited and psd.

Hence these sum must be psd. Furthermore, the projection-slice property also implies that (t,8)

is bandlimited to [-ir,ir], so that it may be sampled in t and standard discrete-time 1-D spectral

estimation techniques applied to it.

Note that regarding fii as samples of a continuous function bandlimited in wavenumber to -7r <

k, k < 7r leads to the choice O(x, y) = sinc(x)sinc(y). The lack of radial symmetry in Q(x.y) makes

its Radon transform 0(t, 0) a 0-dependent sinc function. The above argument for (7) is also applicable

to tis case.

B. Polar Raster

We now consider the same problem, but on a discrete polar raster of points having radius N and

M ra 'ial slices. This is the problem of interest, since our data is given on such a discrete lattice.

The major difference between the rectangular and polar rasters is that, on a polar raster, translation

must be described in terms of polar coordinates. Hence fij becomes fi,,, where integer i denotes radius

and integer n denotes an angle 27rn/M radians from the horizontal (i.e., the nth radial slice). Equation

(3) for itte-polating the fi,, must be modified to

N M

f(r,4) = E > f,,[(r,C) - (i, 2rn/M)] * *(r,C) (8)
t=O n=1

where ** denotes a 2-D convolution in polar coordinates and

b[(r, C) - (i, 27rn/M)] = 6(r cos - icos(27rn/M))b(r sin C - i sin(27rn/M)) (9)

is a 2-D impulse.

The discrete Radon transform (t, 0) of fi,n is again defined to be the same as the Radon transform

of its interpolation f(r,(). Using the property that the Radon transform of a convolution is the

convolution (in t) of the Radon transforms (obvious from the projection-slice property), equation (8)
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is modified to

N M

f(t,9) = 7{f(r,)} - E f/i.,{6[(r, C) - (i,2wn/,M)]}, (
i:=O n=

N IV N A

= Z Z_, ff,,b6(t - icos(0 - 2,rn/M)) * 0(t,0) = _ _ fi,O(t - icos(0 - 2,rn/M),0)
t:=O nl i=O n=1

where -Z{(r, ()} = o (t,0) and we have used the fact that TZ{f(x - a)} = f(t- e a,e) [12], where x

and a are vectors and e is a unit vector.

1. Impulses

Choosing for the interpolating function the 2-D impulse function 0(r,) = 6(r) results in

N M
f(t,9) = 1: E f,6(t - icos(9 - 27rn/M)) (10)

i=O n=1

For this choice of interpolating function, the discrete Radon transform is again zero unless the line

passes precisely through a lattice point. This happens when t = x cos 0 + y sin 0 = i cos(9 - 27rn/M),

i.e., x = i cos 0 and y = i si-, c . Again, only a finite number of lines pass through more than one lattice

point; hence this choice is unsuitable for 2-D spectral estimation.

2. Sinc Functions

The choice 0(r, C) = 5J1 (yr) results in

N M
f(t,9) = E z f,,nsinc(t - icos(O - 2,wn/M)) (11)

t=O n=1

This is a plausible choice. However, this choice of interpolating function does NOT correspond to

interpolating samples of a bandlimited function, since the sampling is performed on a polar raster. The

problem of interpolating a bandlimited function from samples on a polar raster has been considered in

[11]; however [11] required that the samples be taken at non-uniform radial distances, corresponding

to the interlaced zeros of Bessel functions of the first kind of various orders. Hence the results of [11]

are not applicable here.

3. Gaussian Functions
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The choice O(r,') = e - r 2 results in

N M

f(t,9) = Z (t -itcos(02n/M))2  (12)
z=O n=1

since T {e- r2 } = v/-e -t2 . This is easy to compute, satisfying condition #1, and the projection-slice

property (condition #2) holds automatically. However, unlike the sinc interpolating functions, a set

of psd fi,,, guarantees that f(t,O) will be psd in t, so that condition #3 is also satisfied. This is true

since: (1) the Fourier trazsf form of a Gaussian function is also Gaussian; and (2) a Gaussian function

is always positive. We now prove that condition #3 is satisfied. S

Recall that the interpolated function f(x), where x is a vector, is defined by

N M

f(x) = Z E fi,b(x - (i,2irn/M)) * *((x) (13)
i=O n=1 •

where (i,27rn/M) is a point on the polar raster and ** denoteL a 2-D convolution. Taking the 2-D

Fourier transform of this yields

N M 0
F(k) = Z Z fi,ne-Jk'(ik2n/A)P(k) (14)

i=O n=1

where k is a wavenumber vector and P(k) = FF {O(x)}. We recognize the expression multiplying D(k)

as the 2-D discrete-time Fourier transform (2DDTFT) of fi, in discrete polar coordinates; since fixn is 0

psd this is non-negative. If D(k) is non-negative, F(k) is also non-negative, and by the projection-slice

property f(t,O) is psd in t. Hence conditions #1-#3 are all satisfied if: (1) 4(k) > 0; (2) both O(x)

and 0(t,O) have simple forms in polar coordinates; and (3) both O(x) and O(t,0) have "reasonable" 0

forms that interpolate the data (this excludes impulses).

C. Choice of Interpolating Function

At one extreme we have the impulse interpolating function, and at the other extreme we have the

sinc interpolating function. The gaussian interpolating function occupies a middle grolind. Although

there is no firm basis for choice, we have chosen the gaussian interpolating function because it occupies 0

the middle ground.
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Another reason to choose the gaussian interpolating function is that by varying the variance, we

can control the width of the interpolating function in both space and wavenumber. Note from (14)

that the interpolation operation plays the role of filtering, and that the resulting spectrum depends

proportionally to the spectrum of the interpolating functions.

More specifically, the Fourier transform of a gaussian function g(x, y) = e 2 2 is equal to

G(wi,w 2 ) 1{g(x,y)} = e-2(w"+w ), which means that the spectrum of the gaussian interpo-

lating function is still a gaussian function with bandwidth inversely proportional to a'2 (variance). So

if we choose a large a, the interpolating function has a slowly decaying tail and behaves like a low-pass

filter. Hence, we can get a smooth spectrum with low fluctuations. However, the high frequency

components would be highly degraded. On the other hand, if we choose a small a, the interpolating

function approaches an impulse and behaves like a high-pass filter. However, in this case the evaluation

of the Radon transform in some directions does not account for enough data points to fully reflect

the nature of the desired spectrum, therefore, large fluctuations are likely to occur. Note that due to

the bell shape of the spectrum of the gaussian interpolating function, low frequency components are

expected to be less degraded and provide better resolution. If we have a priori information about the

nature of the spectrum, we can choose a suitable a accordingly.

In view of the effect of a on the resulting spectrum, in the following we propose the following

gaussian interpolating functions with different a and normalization constants (c is a constant):

g(x,y) = e 2 , with constant a 15)

g(X,y) = e- 2. ,a = c. i (i denotes radius of the available data) (16)

X2 U2

g(x, y) = e-2,, a = c Z( denotes radius of the data evaluated) (17)

1 ) i(i denotes radius of the available data) 18)

The function (15) is the most basic one. The functions (16) and (17) take into account the fact that

for data points farther away from the origin, the superposition effect using interpolation will not be
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th- same if we use a constant a. If a increases proportional to the radius, the interpolating function

would decay slower as the radius increases, so that the weighting can be kept the same independent

of the radius. The interpolating function of (18) is a normalized one in the sense that the weighting

of the available data point is normalized to 1 as in the discretization case.

IV HIGH-RESOLUTION SPECTRAL ESTIMATION

We now focus on the gaussian interpolating functions, and use them to derive an analytically

explicit procedure for spectral estimations with data points defined on a polar raster. Following the

notations used in section III, we obtain

N M

f(T, y) = f(i, m)e- [( x -
rcosm)

2
+(y-r, sin 0

,)2]/2a
2  (19)

t=0 m=1

where ri = ibr and Om= 27rm/M. Using the shifting property of the Radon transform and 'R{e- (x2 +Y2 )/2a2 } =

av/"e -
1
2/2, 2 , it is straightforward to show that the exact Radon transform of (19) is

N M

f(t,¢) = 7 {f(2,y)} = a"v/ : E f(i,m)e- (t- rcs(m0)) 2 /2" 2  (20) -
t=O m=1

The complete procedure for estimating the power spectral density of a zero-mean homogeneous

random field given discrete data {f(i,m),O < i < N, 1 < m < M} and using the autocorrelation

method of linear prediction is as follows:

1. Use (20) to compute the Radon transform of the data from f(i,m), at some values of t with

equal spacing and 4) 27rj/L,j = 1 ... L;

2. For each 4, compute the autocorrelation of the Radon transform; i.e., autocorrelate the results

of (1) along each slice by (2) (x = (X,y))

r,(x) _ 7Z0{r(x)} = Ili{f(x) * *f(-x)} = R,{f(x)} * Ro{f(-x)} = f(t,o) * f(t,-0) (21)

3. For each 4, fit a 1-D AR(p) (p may vary for different 4) model to the projection data using

the autocorrelation estimates, so we can get a set of linear prediction coefficients, say {h(k)},

corresponding to r¢(j),j = 0,... p- 1;
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4. For each €, use the 1-D AR(p) model to extend the covariance by [5]

p- 1

re (j) =-j h(k)r(j - k), > p (22)
k= 1

5. Take 1-D Fourier transforms along each slice. This is the estimated 2-D spectral density.

Some comments are in order here:

1. The "autocorrelation" assumption of windowing data to zero for Z > N is required in order to

compute the Radon transform of the data, ,race even i(O, p) depends on {x(t,0). t > N}:

2. It is therefore consistent to make the same assumption in fitting the 1-D AR models to each slice

of the Radon transform;

3. As noted above, the Radon transform and autocorrelation operations commute, so the above

procedure can properly be termed an "autocorrelation" procedure;

4. The covariance function of the interpolated function (19) is

r(u v) -2 jf (x.y)f (x + uy+ v)dx dy

S(ri,oj)f(rk, 01) . e-[(u+r,cos°j-TkcCs°,)2 +(+rsin
- rk s

inO
. 2 ]/4 a 2  (23)

S k I

which is a Gaussian-weighted sum of the available discrete data sample - the weighting depends

on the distance vector between two points. Equation (23) also provides a method to compute

the covariance for data defined on a polar raster.

.5. A significant advantage of this procedure is that it guarantees a psd covariance extension of the

finite set of lag estimates computed from the data. Ihis is required to ensure a non-negative

power spectral density estimate;

6. Since the correlation matching property holds for the 1-D linear prediction technique along each

slice of the Radon transform, it also must hold for the entire 2-D spectral estimate, in that
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the 2-D covariance function derived from the 2-D spectral estimate will match the estimated

covariance lags in the Radon transform domain. 0

V SIMULATION AND DISCUSSION

In this section we provide some examples to demonstrate the proposed spectral estimation proce- 0

dure. The data are assumed to be available on a polar raster (I x M, where I is the number of points

along each direction (with radial spacing br), and M is the number of angular partitions). A gaussian

function is used as the interpolating function O(x, y).

To compute the 2-D periodogram, we resample the interpolated data on a rectangular lattice (with

spacing 6x, bv along the abscissae and ordinate, respectively), zero-pad the points along each axis from

L points to 128 points, and then take a 128 x 128 2-D discrete Fourier transform. To use the proposed

new spectral estimation algorithm, we compute the Radon transform of the interpolated data, and

then sample it on T' x M' polar raster, where P is the number of points along each direction (with

spacing 6,a), and M' is the number of angular partitions. The proposed spectral estimation procedure

is then performed independently along each slice.

Note that in the following figures, the abscissae and ordinate denote the x and y axis for the 2-D

periodograms, and radius and angles for the proposed method, respectively. For clarity, only one

quadrant or one half of the spectrum is shown in the following figures. This is appropriate since the

proposed method generates the spectral estimate slice-by-slice. However, the figures for the proposed

method must be visually interpreted differently.

EXAMPLE 1

The algorithm of [17] was used to generate a single realization of a zero-mean isotropic random 0

field with power spectrum density

S1(ww2) 4eO.3(w2+w2)SI ( w:, W2) -- 4e - ° '- (  1+  2

which is a circularly symmetric spectrum as shown in Figure 2. The available data was 3 x 6 (1 =
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3. M = 6) with radial spacing 6, = .2. We used 6 = b=, 0. 1, L = 25, 1' = 6. M' = 36. and

chose t interpolating function defined in (16) with o = 0.15i.

The resulting spectral "stimates are shown in in Figures 3 (for the 2-D periodogram) and -4 (for

the proposed method with AR(4) modeling along each slice). The estimated spectra in both figures

are similar, and close to the true spectrum.

EXAMPLE 2a

The algorithm of [17] was used to generate a single realization of an isotropic random field with

power spec rum density

{ 10 ifW 2 + w 2 < (0.645r) 2

. Ir 122

0 otherwise

which is plotted in Figure 5. The available data had I = 3 and Al = 6 with radial spacing 6 = 0.2.

We used 6, = by = 6" = 0.1,L = 31,1' = 12. M' = 72, and the interpolating function defined in (16).

The iesulting spectral estimates are shown in Figures 6 (2-D periodogram) and 7 (spectrum using

the proposed method). Note that the proposed procedure provides better transition performance on

the d; ;continuity of the original spectrum. However, the 1-D extrapolation of the 1-D covariance also

causes a slight increase of the high frequency components in Figure

EXAMPLE 2b

The algorithm of (171 was used to generate a single realization of an isotropic random field with

power spectrum density S 2 (w1 ,w 2 ) (same as for Example 2a) plus a white gaussian noise field at a

5'.VI equal to 7dB. Now a = 0.3i is used in the interpolating function (16): all other parameters are

the same as in Example 2a.

The resulting spectral estimates of power spectral density are shown in Figures 8 (2-D periodogram)

and 9 (spectrum using the proposed method), respectively. N-'e that the estimated spectrum in Figure

9 is not as good as that in Figure 7, due to the additive white noise. However, it is still better than

the 2-I) periodogram shown in Figure 8.
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EXAMPLE 3a

Here the random field whose power spectral density is to be estimated is the deterministic 2-D

signal

D(x,y) = cos(w1X + w 2y) + cos(w3X + w4y)

where (wI,w 2 ) = (0.1737r,O.ir),(w 3 ,w 4 ) = (0.12ir,0.2087r),x = ibrcos(j9),y = irsin(j9),O < i_

1, 1 < j !_ M, and 0 = 27r/12 (M=12). This consists two closely-spaced low frequency sinusoids. The

available data has I = 12 and M = 12 with radial spacing b, = 1. We used 6, = by = br, = 1,L =

31.1' = 12,M' = 72. and the normalized interpolating function defined in (18). a is chosen to be

0.02i, which is much smaller than the spacings of the interpolated points, so the interpolating function

is close to an impulse function. This is a reasonable choice; since if a is too large, the spectrum will

be smeared by those of the adjacent directions, which will reduce the overall resolution. An AR(3)

model is used to extrapolate the 1-D covariances in the proposed method.

The resulting spectral estimates are shown in Figures 10 (2-D periodogram) and 11 (spectrum

using the proposed method). Note that the 2-D periodogram in Figure 10 shows only one peak. so

that it fails to resolve two sinusoids. In contrast, for the proposed method in Figure 11, two peaks are

apparent and are located at (0.1757r,0.109ir) and (0.117r,0.203r), respectively, which are very close

to the true frequencies. More accurate results were achieved using more points along each direction.

Also note that the artifacts in Figure 10 are exaggerated in appearance, due to the nature of the

plotting axes. A radial, rather than rectangular, plot of axes radius r vs. angle 0 would reduce the

visibility of the artifacts.

EXAMPLE 3b

Here the random field whose power spectral density is to be estimated consists of the deterministic

signal from Example 3a plus a single realization of a white gaussian noise field with unit power:

D 2(x,y) = cos(w1 x + w 2y) + cos(w3 X + w4 y) + w(X,y)

We use the normalized interpolating function defined in (18) with a = 0.02i. and AR(3) modeling
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along each slice in the Radon transform domain. All other parameters are the same as in Example 3a.

The resulting spectral estimates are shown in Figures 12 (2-D periodogram) and 13 (proposed

method). Although some spurious peaks appear in Figure 13, due to the additive white noise, the

two peaks for the sinusoidal input signals are still obviously distinguishable in Figure 13. The 2-D

periodogram in Figure 12 not only contains many spurious peaks, but also fails to resolve two sinusoids.

Use of a Bessel function as the interpolating function gave less satisfactory results; in the resulting

spectral estimate the two sinusoidal peaks are not resolved.

VI 2-D CORRELATION MATCHING ON A POLAR RASTER

A. Introduction

The above 2-D spectral estimation method may be used to estimate 2-D spectra on a polar raster.

either directly from data or from specified covariance lags. In the latter case, however, the above

method does not preserve the specified covariance lags: The inverse 2-D Fourier transform of the 2-D

power spectral density (the 2-D covariance) does not match the given covariance lags. Hence it does

not satisfy correlation matching in the 2-D plane.

In this section we propose a procedure that extends a given set of 2-D covariance lags. specified

inside a disk of radius R, into a 2-D covariance function specified everywhere in 7Z2 , and which matches

the given 2-D covariance lags. It guarantees that the extended covariance is a 2-D psd (positive semi-

definite) function, ensuring that the power spectral density will be non-negative everywhere. Although

the procedure is applied to functions defined continuously on 7 2 , it may also be applied to discrete

covariance lags on a polar raster by interpolation, as described above. We also discuss when such an

extension is impossible, and how this is manifested in the algorithm.

The problem addressed is as follows:

Covariance Extension Problem: Given a set of covariance lags {f(r, 0), r < R} for come radius R.

determine an extension {f(r,9),r > R} of the given lags such that: (1) f(r,O) agrees with the given
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values {f(r,O),r < R}; and (2) f(r,O) is a 2-D psd function, meaning that its 2-D Fourier transform

is real and non-negative everywhere.

B. Radon and Backprojection Transforms

To explain the procedure, and to explain why it is necessary for covariance extension, we define the

Radon transform, the backprojection transform, and note some causality and psd-preserving properties

of each transform.

Radon Transform in Polar Coordinate: Let f(x) = f(r,0) be a function defined on x E V . Then 0

the Radon transform f(t,O) of f(r,O) is

f(t,¢) = 1Z{f(r,0)} = J f(r,O)6(t - r cos(0 - 1))rdOdr (24)

Note that the Radon transform is the line integral of f(r, 0) along the line t = x cos p + y sin o, where

x = rcos0 and y = rsin0.

Backprojection Transform: Let f(x) = f(r,0) be a function defined on x E .2 Then the back-

projection transform J(t,o) of f(r,O) is

(t,) = B{f(r,O)} = j f(r,0)6(r - t cos(0 - 0))dOdr

= f(r = t cos(O - ).,O)dO (25)

Note that the backprojection transform is the circular mean of f(r,O) on the circle r = t cos(0 - P)

(t-rte that the point (r,&) coincides with the point (-r,g + 7r); this is why the integral over 0 varies

only from 0 to 7r rather than 27r). This circle passes through the origin, has diameter t. and has its

center at ((t/2)-cos 0, (t/2) sin 0). The backprojection transform is also half the adjoint of the Radon

transform ([12], p.134); note that (24) and (25) differ primarily in that r and t have been interchanged.

Anticausality of Radon Transform: Let f(t, 0) = 7Z{f(r, 0)}. Then for any T > 0, (T, ) depends

only on the values {f(r,0),r > T}. This is clear since (T,O) is the line integral of f(.) along the 0

line T = x cos0 + ysin0, whose minimum distance from the origin is T. It is also true that given
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{f(t, ),t > T}, it is possible to reconstruct {f(r,0),r > T}; an explicit formula has been given by

Cormack [18].

This anticausality explains why the above spectral estimation procedure does not preserve the

given covariance lags. Any given covariance lag at radius T depends on all values t > T of the Radon

transform of the covariance. But these values for t > R have been changed from zero by the 1-D

extensions applied to f(t, 0) independently for each 0. Hence the extended covariance does not match

the given covariance lag.

Causality of Backprojection Transform: Let f(t,o) = B{f(r,O)}. Then for any T > 0, f(T,p)

depends only or the values {f(r,O),r < T}. This is clear since f(T,O) is the circular mean of f(-)

along the circle r = Tcos(0 - 6), so that r < T always. Another way to see this is to note that

backprojection at the point (T, O) can also be viewed as the integration over all lines r = x cos O+y sin 9

passing through (T, o); any such line must pass closer to the origin than T, so that any such line will

have r < T. It is also true that given {(t,o),t < T}, it is possible to reconstruct {f(r,0),r < T} (see

[19]).

Inverse Radon Transform by Backprojection: Let f(t,p) = 7Z{f(r,O)}. Then we may recover

f(rO) from f(t,o) by computing

f( rO) = B3(t, 0 _(rO}'hd( t, O) (26)

where R- denotes the Hilbert transform 7-t{f(t)} = f(t) * ." This is the well-known technique of

filtered backprojection [12]. Nute that here f(t, €) is regarded as a collection of functions indexed by

o. rather than as a continuous function of polar coordinates (t, d).

Positive Semi-Definite Properties of R and 5: Let f(r, 0) be a 2-D psd function. Then (t,q)

R{f(r,0)} is a l-D psd function in t for each 0 by the projection-slice theorem of the Radon transform,

and 'h]f(t.0) is also a 1-D psd function in t for each p, since the filtering operation 7-A corresponds to

multiplication by Ikl in the Fourier domain: .Ttk{Jjf(tO)} k= IFt.kjf(t,0)}. Hence the inverse

backprojection transform B-' maps 1-D psd functions to 2-D psd functions, as does the inverse Radon
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transform.

C'. Covariance Extension Procedure 0

We propose the following procedure for extending a given set of covariance lags f(x), x C Z'2 , Ixi <

R into a function f(x),x E )2 specified everywhere in L' and which agrees with the given set of

covariance lags:

1. Compute the Radon transform f(t,O) of the function f(r,O) defined by f(r,O) = f(x) if r =

Ilxi < R; 0 if r > R. Note that f(t,o) = 0 for t > R by anticausality of the Radon transform;

2. Compute 7-1J(t,¢) from f(t,). Note that 'HI(t,O) $ 0 for t > R due to the smearing effect

of the Hilbert transform H;

3. Replace the values of tdJf(t,O) for t > R with values such that 7-Af(t,¢) is 1-D psd in t for

each 0. Call this new function "Hd](tk); note that "L-f(t, )=f-ldf(t,e) for t < R;

4. Compute F(r,O) = 3-1 {?-f(t,¢)}. F(r. 9) is the 2-D psd extended covariance function.(t,o)-(r,0) d

By the causality property of 6, F(r, ) = f(r,O) for r < R, so that the extend(led covariance matches

the given covariance lags. By the psd property of B, F(r,O) is a 2-D psd function since H!(I.0) is

t 1-1) psd function in t for each 0. tlence we have successfully extended the given covariance lags into

t 2- 1) psd covariance function F(r, 0).

Note that the only difference between this procedure and the previous procedure is that dt of the

Radon transform of the given covariance lags is computed before performing the 1-D psd extensions,

instead of after. This seemingly minor change allows the use of the causality property of 8, instead of

the anticausality property of 7Z- 1.

It might seem at first glance that this constructive procedure allows any 2-D set of covariance lags

specified inside a disk of radius R to be extended into a 2-D psd covariance function. This seems

to contradict the known fact [71 that some sets of covariance lags are not extendible into a 2-D psd

covariance function. The resolution of this paradox is found by noting that it may not be possible to
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form a 1-D psd function J-f~f(t,0) from the 'f(t, k) computed from the given covariance lags. For

example, if for any 0 there is a t < R such that 7-jdt(t,) > hl- (0,O.), then the 1-D psd extension

cannot be performed for that h, since any psd function g(t) must have the property that g(t) !_ g(O).

This explains how a 2-D extension may be impossible.

Another important question is: Can all possible 2-D psd extensions of the given f(x), x E TZ2, Ix1 <

R be found from all of the possible 1-D psd extensions of the 7-lfd(t, 0)? Unfortunately, the answer

is no. To see why, we now investigate briefly the nullspace of B.

D. Nullspace of Backprojection Operator

Let f(x),x E 7Z2, IxI > R be an extension of given values f(x), Ix < R. Now compute the filtered

Radon transforms of both the given values f(x), IxI < R and the extended values f(x), Jxi > R (note

the latter is a "hollow" function):

dt--t~,P = -td-7{f(x), lxi > R:O, Ixl < R};

- d
= 7-f{f(x), lxj < R: 0, lxi > R}

Here f,t(t, 0) is the function which is extended to create a I-D psd in the procedure we proposed

above, and by construction, t{fet(to)} = 0 for t < R.

We now consider the following question: Does e.t(t, ) = 0 for t < R? That is, is there a non-zero

function fext(t, o) such that 0{)j(t,()} = 0, i.e., does B have a non-empty nullspace?

The significance of this question is as follows. If B does NOT have a non-empty nullspace, then

fz(t, ) = 0 for t < R. Then

Tt1ZA{f(x)} = f!-t(t,op) + .ft(t,4o) = fit.t(t,O),t < R

and ANY extension of given values f(x), jxi < R is associated with an extension of fnt(t, 0), so that

ALL 2-D psd extensions of the given lags are associated with 1-D psd extensions of fit(t,0). But if

B HAS a non-empty nullspace containing some non-zero ft(t,o), then

71-Z{f(x)} = fet(t,0) + f,,t(t,O) $ f, ,(t,0),t < R
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so that the extended f(x) is NOT associated with l-D extensions of fjt(t,0),t < R, but with 1-D

extensions of fit(t,¢)+ f1 ~t(t,0),t < R. This implies that not all 2-D extensions of f(x), lI < R can

be found from 1-D extensions of f 1nt(t,¢),t < R.

Unfortunately, 1 DOES have a non-empty nullspace, so that it is not true that all 2-D psd exten-

sions of a given set of covariance lags can be found using the procedure proposed above. Indeed, it

might seem that for ANY function f(x) such that f(x) = 0,IxI < R, we would have )H7-T{f(x)} $ 0

for t < R. Of course this is not true-indeed, our procedure constructs functions f(x) = O, Ixl < R

such that 7-t0J{f(x)} = 0 for t < R. Furthermore, we have the following theorem:

Theorem:

Let f(r,0) = 0 for r < Rand let HdjR.{f(r,O)} = 0 for t < (, for any c > 0. Then "Hdqj{f(r, 9))

0 for all t < R.

Proof: To prove this theorem we need the following lemma:

Lemma:

Let g(r,O) be any continuous function equaling zero at the origin. Define g'(r,O) = g(R/r.o).

compute the Radon transform '(t,¢) of g'(r,0), and define 4(ik) ='(R/t,k). Then (t,¢) =

Proof of Lemma: We have

(t,) 7Zg(R/r,)}tR/ = j j 6(R/t - rcos(O - 0))g(R/r, O) dOdr

= 24 6(R/t - R/r cos(0 - 0))g(r, 0)R 2 r - 3 dO dr

= JJ 6(r - t cos(O- c))(r. O)tRr - 2 dO dr

- tRB(7 ,e)_.(t,0){g(r,O9)/r 2 } (27)

wharp wo h~vp eh4n-'ed variables from r to R/r and used the scaling property b(xR/(rt)) = rt/Rb(x)

of the impulse. U

This result is not surprising: Reflecting a function across the circle of radius R amounts to taking

its involute, and the involute of a line (along which the Radon transform is computed) is a circle (along

25



0

which the circular mean, i.e., the backprojection, is computed).

-* Proof of Theorem: For convenience in using the Lemma switch the variables t and r, and o and 0.

Define g(t,o) = Rtf(t,¢). Then

1-t d f(t,o)} = B-{g(t,0)/(Rt)} = (r,O)/r2* dr

where 4(r,9) = T-'{g(R/t,.)}yR/r. But we are given that g(t,¢) = Rtf(t,O) = 0 for t < R,

which implies that g(R/t,4) = 0 for t > 1. But then T-{g(R/t,0)} = 0 for r > 1, so that

0(r, ) = 1 - '{g(R/t,¢)}1.R/r 0 for r < R. The result follows immediately. a

The heart of the above proof is the conclusion that g( R/t, ) =0 for t > 1 implies that 7Z-'{g( Rt, )}=

0 for r > 1. Although this seems obvious, it is not in fact true unless T1-1{g(R/t,¢)} is also known

to go to zero sufficiently fast as r - c. This is why we also need the condition .6(r, 0) = 0 for r < C,

so that 4(r,f) = 1Z-1 {g(R/t,¢)}rR/r is known to be zero for r > R/e.

The major point of this section is that the inability of our proposed procedure to specify all of the

2-D psd extensions of the given covariance lags, due to the non-empty nullspace of B, is not as bad as

it may first appear.

VII CONCLUSION

A procedure for estimating the power spectral density of a homogeneous random field from discrete

data inside a disk of finite radius has been presented. Unlike spectral density estimators using 2-D

linear prediction on a rectangular raster, the estimated spectral density is guaranteed to be non-

negative, since the extended (in the Radon transform domain) covariance is guaranteed tW be psd.

The procedure operates by employing a novel interpolation technique, using gaussian basis func-

tions to compute the Radon transform analytically from a few discrete data points. 1-D linear predic-

tion is then used along each slice to compute spectral density estimates along each slice of the Radon

transform. The procedure can be viewed as an "autocorrelation" method, since the unknown data is

windowed to zero both for purposes of computing the Radon transform and for fitting the 1-D AR
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models to each slice of the Radon transform. This procedure also provide a high-resolution spectral

estimates for the data on the polar raster. Some numerical examples are provided to demonstrate the 0

validity of this procedure.
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FIGURE HEADING

1. Figure 1: The polar raster on which the 2-1) random field is defined with M = 8.

2. Figure 2: Spectrum of S1 (wI,w 2 ) = 4e -O3(w?+w )

3. Figure 3: 2-D periodogram for Example 1.

4. Figure 4: Spectrum obtained by using the covariance extension for Example 1.

5. Figure 5: Spectrum of S2(wI,w 2) = 10 if Wl + w2 < (0.6457r) 2 , 0 otherwise. 0

6. Figure 6: 2-1) periodogram for Example 2a.

7. Figure 7: Spectrum using the proposed method for Example 2a. 0

8. Figure 8: 2-D periodogram for Example 2b.

9. Figure 9: Spectrum using the proposed method for Example 2b. 0

10. Figure 10: 2-D periodogram for Example 3a using normalized interpolating function.

11. Figure 11: Spectrum for Example 3a using normalized interpolating function and the proposed

method.

12. Figure 12: 2-D periodogram for Example 3b using normaized interpolating function.

13. Figure 13: Spectrum for Example 3b using normalized interpolating function and the proposed

method.
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Figure 1: The polar raster on which the 2-D random field is defined with M = 8.
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Figure 7: Spectrum using the proposed method for Example 2a.
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Figure 11: Spectrum for Example 3a using normalized interpolating function and the proposed method.

40



.0

..... .....

Figure 12: 2-D periodogramn for Example 3b using normalized interpolating function.

41



P.~~ ~ A AL

Figure 13: Spectrum for Example 3b using normalized interpolating function and the proposed method.

42



APPENDIX H

W.-H. Fang and A.E. Yagle, "A Systolic Architecture for New Split Algorithms for

Arbitrary Toeplitz-plus-Hankel Matrices," submitted to IEEE Trans. Signal Processing.



A Systolic Architecture for New Split Algorithms for Arbitrary
Toeplitz-plus-Hankel Matrices

Wen-Hsien Fang and Andrew E. Yagle
Dept. of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

June 1991

Abstract

Recently, new fast algorithms have been developed for computing the optimal linear least-
squares prediction filters for arbitrary Toeplitz-plus-Hankel covariances [11. In this correspondence,
we propose a systolic architecture that can fully express the inherent concurrency of this highly
parallelizable algorithm. The simplification of this array structure for centrosymmetric covariances
is also addressed.
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I INTRODUCTION

The advent of high speed, low cost VLSI devices has changed the field of signal processing dramat-

ically. Due to its tremendous computational capability, more sophisticated algorithms have become

feasible through ,,,me special-purpose device, e.g. ASICs (application-specific ICs). Under such cir-

cumstances, the conventional criterion of number of computatioas alone is no longer an effective

measure of overall performance. The structure of the algorithm and its corresponding hardware archi-

tecture play an even more important role. More specifically, an efficient algorithm is defined in terms

of its parallelizaiion and the possibility of hardware structures that can fully express its paralielism

so that minimal time complexity can be achieved.

Recently, new split algorithms were developed for computing the linear least-squares prediction

filters for arbitrary Toeplitz-plus-Hankel covariances [1]. These fast algorithms not only are highly

parallel but also perform regular iterative computations. In addition, the Laplacian operator appearing

in all the recurrences is an operation involving only closest neighbors. With these desired properties

(parallelization and ",;cal communication), it is natural that there exist some highly concurrent VLSI

computing processors for these fast algorithms such that the overall time complexity can be further

decreased. This correspondence confirms this conjecture by proposing some corresponding hardware

architectures which are amenable to VLSI implementations.

Special attention will be put on the systolic array architecture. This specific hardware structure

(array processors) has several desirable features, such as making multiple use of input data (pipeline

processing), using extensive concurrency, involving only a few types of simple cells (saving design cost),

and simple and regular data flow (local communication) [2]. To follow we will follow the procedures

proposed in [3] to map the fast algorithms of [1) onto some systolic architectures. After we put in the

initial conditions, the results will rhythmically pump out of these array processors.

This correspondence is organized as follows. We begin with a brief review of the fast algorithms of •

[1). A systolic architecture is then developed to implement these fast algorithms. The array structure
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and the required control program are discussed. Its simplification for centrosymmetric covariances will

also be addressed. Finally, we conclude this paper with a summary and future perspective.

II SYSTOLIC ARCHITECTURES FOR THE NEW SPLIT
ALGORITHMS

A. Review of thf New Split Algorithms of[1]

The problem considered is as follows. From the 2i - 1 noisy observations {yil-, Yi-2 .... Y-(i)

of a zero-mean, real-valued discrete random process {xk}, compute the linear least-squares estimates

of xi (forward prediction) and x-i (backward prediction) for i = 1. 1.5,2,2.5 .

The observation {Yk} are related to the process {xk} by Yk = xk + nk, where {fnk} is a zero-mean

discrete-time white noise process with unit power, and {Xk} and {nk} are uncorrelated. The estimete-

of xi and x., are computed from the observations using

i-I i-I
5,= h(i~j)y,; L-, = Z h(-i,j)j, i = 1,1.5,2,.... (1 i

j=-(z-1 ) -i1

The prediction filter h(i.j) are computed by solving the following Wiener-Hopf equation (for i =

k(i.j) = h(ij) + 3 h(i,n)k(n,j), -(iI - 1) _< j :_ jil - 1 (2)

The goal of [1] is to derive fast algorithms for solving (2) when k(i,j) ('_ E[xixj]) has the Toeplitz-

plus-Ilankel structure. i.e. k(i,j) = kl(i - j) + k 2 (i + j). For a (2max - 1 )h order linear prediction

problem (from i = -(,,,x - 1) to I,,, - 1), the overall procedure for the new split algorithm of [1]

can bo summarized as follows:

1. Initializations:

h(±1,0) - k(±1,0)
1 + k(O,o)

1 1 1 1 1
,(-,j) = k(± ,j) for j = ±1-1 .. ,:(2 - )

2 2 2 ' 2' - 2

j' ± I'j + k(±-1, j') - h(± 1, O)k(O, j') for j' = i,±2t,2 .....iA(2max. - 1)
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2. Computation of the non-local potentials IK's:

Computing V's by solving the following 2 x 2 simultaneous equation:

[ si - i -~.) s((i - .1), i - 3)1J (i - -!,I - -S(i, i) 12= 
(3)Soi - ,-(I- 1)) s(-(i - ), -(Zi- -)) ?i Soi- I, -(I - ))- soi, -i0

3. (a) Generalized Levinson algorithm

i. Border points

b(z + - i =h(i, i- 1) - V";; h(i* + : -(i- - ) h(2'.-(i -)-Vi (4)

2 22 2

ii. Nonborder points (for -(i - ) ) j (i - )

1 V h1i
h(i±l,j) = h(i,j+2)+h(i,j--)-h(i-h,j)+V 1 h(-j)+Vh(-(i - -),j) (5)

2 2 2 2 2 2 2

(b) Generalized Schur algorithm ( for i + < j < 2lmax)

0
i+ 2J)=S(i'j +- +s(i'j -)-s(i - j) + Vils(i- + (6)

2 2 2 2' ~ 2( - (6) Vl

4. Continue Steps 2 to 3 from i = 1 to Imax with every step increment1

where the Schur variable s(i,j) =_ 6,,, + k(i,j) - h(i,j) - Fi- (i-1) h(i, n)k(n,j). Note that from (2),

.s(ij) = 0 if Ij[ < Ii!

B. Systolic Array for the above Fast Algorithm

The above fast algorithms require 24I,1.z multiplications and divisions, and 481'a. additions and

subtractions [1]. To follow, we propose a systolic architecture that can fully exploit the inherent

0
concurrency (parallel and pipeline processing) of this algorithm so that O(Ima ) time complexity can

be achieved.

To map this algorithm onto a corresponding array processor, we follow the procedures proposed in

[3]. First, a DG (dependence graph) is established in Figure 1, where tba shaded regions denote th,

region of support for the Schur algorithm. A SFG (signal flow graph) can then be derived by mapping
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this DG along some feasible direction. In the sequel we choose the mapping along the i direction.

Since this is a systolic direction, the resuiting SFGs, which are shown in Figures 2 and 3, are also the

desired systolic arrays.

Figure 2 shows the array processors with 16Imax + 4 processing elements (PE's) that implement

the generalized Schur algorithm, while Figure 3 shows the array processors with 8 1 ma, - 6 PE's that

,mplement the generalized Levinson algorithm. The overall architecture is the combination of both

two array processors. Figure 4 shows the operations performed in the right-hand (i > 0) upper

and lower PE's-, rpoctively. TI" left-hand (i < 0) processing units are the same except that the

direcionsof 1(2) ()
directions of V;, are reversed. (Note that for clarity, the transmission of Vi'2) axe not shown in the

array processors of Figures 2 and 3.) For convenience, the array processors in Figures 2 and 3 will be

referred to as array S and array L, respectively.

The initial conditions s(±!, ±j), s(+l, ±j'), wherej = ,1k,... .2!,a, = 1,2, 2Im -l,
2.. - , j, ' 21= 1,.

and h(±1, 0) are put in the array S and array L, respectively, beforn the recursion begins. At first

stage of the recursion, the potentials Vs are computed at the four central computing units in array S

by using (3), then Vi s are sent to all the other processing units in array S to update s(i,j) by using

(6), and to array L to update h(ij) by using (4) for the border points and (5) for the nonborder

points.

After completing the updating pocedures, the contents in the array S (i.e. s(i,j)) are shifted

centerward by one unit to prepare for the next recursion. The recursion continues until i = Ima, with

the step of -1 in each recursion. Note that in the updating process, the processing units are activated

only on alternate time steps. This is because the updating equations (5) and (6) involve the variables

of the previous two time steps. The results of this interleaving update after each time step are shown

in Figures 2 and 3. We can find that the variables indexed with integer and half-integer "pop up"

alternately. If the computation of the non-local potentials in (3) requir-s time interal rl and the

"ipa '"~ F :' ttirg operations require time interval r2 , then the total computing time complexity
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would be (2 Ia, - 2)(r + r2 ). Note that since the recurrences perform in-place computations, only

24Imr - 2 memory units are required.

The undesired globa- transmission (broadcasting) of the non-local potentials Vs (see Figure A) can

be avoided by using the concept of computational wavefront proposed in [3], in which the operation

performed in each cell is triggered by the availability of the data, instead of by the global clock. The

updating processes axe finished after the computational wavefront propagates from the center to the

right (left) end, for which the computing time becomes (21m,, - 2)(r, + r2 ) + Imatr2 by assumption.

The extra time ImarT2 is the price to avoid the global communication scheme.

A program, which adopts the same notations used in [4] and summarized the above procedures,

is shown in Figure 5. This control program is broadcast to each PE before the arrays begin the

recursion. Note that further simplifications are possible. Since the arrays S and L perform almot the

same type of operations with complementary support, we can combine both arrays into a single one

with a suitable partition. Also. since the PE's are only active at alternate time step, pairs of adjacent 0

processing units can be combined together so that the number of the PE's can be reduced by one half.

If we solve (2) directly using the Gaussian elimination procedure, 0(I,3,,,) multiplications and

divisions, and 0(Ia,) memory units are required using a sequential machine. Furthermore, this 0

is not a highly parallelizable procedure. Merchant and Parks provided an efficient alternative to

compute the 'loeplitz-plus-Hankel coefficient matrix system of equations [5]. However, their approach

is to reformulate the original system into a block-Toeplitz system, and then solve it by the multichannel

Levinson algorithm, which not only requires much more complex computations (e.g. matrix inversion),

but also needs larger data bus and more memory space.

C. Simplification of the Array Structure for Centrosymmetrir Cc:'ariances

In the special case that k(i,j) = k(-i, -j), i.e. a centrosymmetric covariance matrix, we have

h(i,j) = h(-i,-j),s(i,j) = s(-i,-j),V = V2 j, V.2 = VL [1] . Hence the arrays for i < 0 can be

dispensed with.
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Fuither simplification is possible if we define

a(t,j) = h(i,j) + h(i, -j). e(i,j) := s(i,j) + s(i,- j), Vi ;1 + v12  (7)

then we can get the recursive expressions for a(i,j) and e(i,j), respectively, as follows

a( i + IJ, =  a(zi,j + 1) + a(i~j - 1) - a(?i- 1 3j) + Via( i - -1,j) (8)
1 1 1 .1 . 1.2' 2 2 2 2

e(i + -1,J) = e(i~j + I ) + e(i~j - 1 ) - e(i - 1,J) + Vie(i - -1,J) (9)
2 2 2 2 22

and the new non-local potential V can be computed by

1 1 1 1

1K = [e(ie(ifi)]/e(i - -,i - 1) (10)

Sirnmlarly, we can define

a*(ij) h(i.j) - h(i, -j), e*(i,j) = s(i,j) - s(i, -j), V - V1 - 1,2 (11)

and we can get the same recurrences for a*(i,j), e*(i,j) and Vi as (8),(9), and (10), respectively.

The array processors for solving the centrosymmetric matrix systems are shown in Figure 6, where

four array processors are constructed to update a(i,j),a*(i,j),e(i.j), and e*(i,j) respectively. The

operations performed in each PE are similar to those of Figure 4. The division cells (DIV) are used

to compute the non-local potentials Vi (Vi'), which are then used to update a(i,j) (a*(i,j)) and

e(ij) (e*(i,j)), respectively. The resulting h(i,j) and h(i,-j) can be derived by

h(i,j) = a 2.j)+a(i,j) a(i,j) - a(i,j) (12)2'

In Figure 6, 2(21m - 1) PE's are required for e(i,j) and e*(i,j), and 21,,,, PE's are required for

a(i,j) and ,i(i.). Note that here we put two adjacent points ((i,j) and (i- 1,j - 1)) in each PE, so

the overall memorv reei,"d : 1(2IMax - 1ir-, 1 -.. e ube the cor.,p..mntary

support property of e(i,j) (e*(i,j)) and a(i,j) (a*(i,j)), then we can put a(i,j) (a(i,j)) at the end

of arrays e(i,j) (e'(i,j)) and use only 2(21ma, - 1) + 1 PE's plus 4(2Imo - 1) + 2 memory units.
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If the division requires time interval r and the update plus shifting operations require time interval

r2 , then the total computing time complexity would he (2 Imr - 2)(r + 72 ). Again, if we use the

data-driven computational wavefront, then the computing time becomes (2 I,az - 2)(r + r2 ) + Imaz, 2

by assumption.

Since the symmetric Toeplitz matrix is a special case of a centrosymmetric matrix, we can compare

this array architecture with those proposed for solving the Toeplitz system of equations [6, 7]. We find

that not only is the architecture simpler, but also the overall computational time is reduced. This is

not surprising because we are concerned with a linear prediction problem which has specific right-hand

side in the matrix equation, instead of solving a general Toeplitz system of equations, which requires

the inversion of a Toeplitz matrix followed by a back substitution operation. Applying our proposed

architecture to arbitrary centrosymmetric systems of equations would require additional processors

for the back substitution. Nevertheless, the proposed architecture is capable of solving more general

problems (applicable to arbitrary Toeplitz-plus-Hankel or centrosymmetric covaxiances) than those of

[6, 7].

III CONCLUSION

In this correspondence, we have developed a systolic architecture to implement the recently-developed

fast algorithms of [1] to compute the optimal linear least-squares prediction filters for arbitrary

Toeplitz-plus-Hankel covariances. The overall time complexity for computing the (2 m, - 1)th order

linear prediction filters is reduced from O(I~ax) to O(Ima) by using only O(Imax) PE's and O(Ima)

storage. Some issues that need further research are as follows. Modifications of the above systolic ar-

chitecture sc that ;t is capable of solving more general Toeplitz-plus-Hankel coefficient matrix system

of equations. Extension of this architecture to the 2-D counterpart [8] of the above 1-D fast algortihms.
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FIGURE HEADING

i. Figure 1: Dependence graph for the 1-D generalized Levinson and Schur algorithms.

2. Figure 2: Systolic architecture for tne I-D generalized Schur algorithm.

3. Figure 3: Systolic architecture for the 1-D generalized Levinson algorithm.

4. Figure 4: The operations performed in the right-hand upper PE's (left) and lower PE's

(right) (except the boundary PE's of array L).

5. Figure 5: Program performs the update procedures in each PE.

6. Figure 6: Systolic architecture for solving the centrosymmetric matrix system
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Program { for PE j and the prediction filter at point i + }

{ i will increase by 4 at the end of each recursion }

for j := - ) to (z - -) do beat begin { is an integer }

receive i from left(right) neighbor:

ser d I, to right(left) neighbor;

{ transmission of the non-local potential}

if j is a half integer, then begin

if PE is non-border cl ( j 4 ±(i - )) then do equation (5);

else do equation (4);

end:

else {j is an integer }

PE do nothing;

beat end:

beat begin { j is -n integer } { i is a half-integer }

{same procedures by switching the role between "integer" and "half-integer" }

beat end:

end:

Figure 5: Program performs the update procedures in each PE
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Experimental Results

In this section, we provide some simple simulation results by applying the fast algorithm devel-

oped above to the image restoration (smoothing) and coding problems.

1 Image Restoration and Smoothing

The objective of the image restoration and smoothing is to recover the original image from a

degraded one which is contaminated by some sort of noise. Here, we consider the most common

case that the noise is the additive white noise and the method employed to reduce the observation

noise is the linear least squares prediction or smoothing.

The comparison criterion is the improvements of the Signal-to-Noise ratio (ISNR), which is

defined as

ISNR (dB) = 10 log average signal power - 10 log average signal power
average power of prediction error average power of observation error

= 10 log average power of observation error
average power of prediction error

For each set of data, four types of algorithms are used to compute the resulting ISNR. These

four algorithms include : Linear Prediction (LP), Linear Prediction on zero mean residues (LPZM),

Smoothing (SM), and Smoothing on zero mean residues (SMZM). LP is to use the fast algorithm

developed to compute the linear prediction filter, and SM is to compute the smoothing filter by

combining the LP and the BSK identity. LPZM (SMZM) means that the linear prediction (smooth-

ing) filter is applied on the zero mean residues which are derived by subtracting the global mean

from the original signals. For simplicity, the observation noise is the white noise with unit power.

The prediction coefficients are generated by assuming that the covariance function has the form as

p (p = 0.995 z I and r is the distance from the origin) so that the requirement of the covariance

having Toeplitz-plus-Hankel structure is satisfied.

ftom figures (1) to (4), four different isotopic random fields are generated. The covariance

functions for these four isotropic random fields an 4(0.82)' for figure (1), 7(0.78)' for figure (2),
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12'"78' for figure (3) , and 3.5K,(r) for figure (4) respectively. The points along each direction are

fixed to 10, and ISNR is computed for different M (number of angular points).

The simulation results show that in general ISNR improves as M increases. That's a reasonable

result since with more data points (information) available, we can get a more accurate prediction

of the original signal. The same argument can also be applicable to the result that ISNR using SM

is larger than that using LP. The latter is furtherly supported by the results that the difference of

ISNR for LP and SM becomes larger as M increases, which reflects the fact that the data points

available for SM are propotional to M so that the the difference of the data being available increase

as M increases.

The ISNR for LPZM (SMZM) are slightly better than that for LP(SM) in small M and are

approximately the same for larger M. This may be explained that when only small amount of S

data are available, LPZM (SMZM) satisfy the zero mean assumption and produce a more accurate

prediction (smoothing). But as more data are available, the data generated will be approximate
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zero mean so that both results won't make much difference.

It's worth noting that the simulation results in figures (3) and (4) are similar to those of the

previous figures regarless of the mismatch of the covariance function. This striking result shows

that even the linear )rediction (smoothing) filters are generated by the wrong assumption of the

covariance functions, the resulting ISNR is still satisfactory as long as the random field is isotropic

and highly correlated, which happens quite often in the practical images. The ISNR in figure (4) is

better than that in figure (3) because the covariance function in figure (4) is more correlated and

does not decay as fast as that of figure (3). This highly correlated covariance, i.e. p A 1, is the

requirement to derive the above fast algorithm.

The results of the LP which use all the available data on a polar raster are better than those use

only the data on the same line, which is equivalent to 1-D linear prediction problem (lDLP). As

shown in the figure (5), the ISNR for LP is always larger than that for 1DLP. In addition, since the

linear prediction only utilizes the previous sample in the 1DLP, the ISNR will be approximately the

same for all M, which is opposed to that for LP (SM). This is another advantage of LP over 1DLP.

Although the algorithm for the latter is faster by using the 1-D Levinson algorithm, however, the

performance is worse.

These simulation results confirm our claim that these two algorithms (for prediction and smooth-

ing) work well independent of the value of M, although the performance gets better as M increases,

i.e. more data are available.

I I I II II I I I5



2 Linear Predictive Coding of Images
0

We can note that the linear predictive coefficientr can be obtained as long as the covariance

function is available. Therefore, we can either store or transmit the residues of the data instead of

the data itself and accompany the covariance function as the side information. Since the residues are

derived by subtracting the liuear combination of the previous data from the present data to reduce

the unnecessary redundency, hence they are in general smaller than the data themselves. Besides,

in many cases only few parameters, e.g. p in the isotropic random field, would be required to specify

the covariance function. Therefore, the overall storage requirement can be reduced significantly in

the finite precision environment.

We take the previous data as examples by considering the noisy images as the original image

and the prediction errors as the prediction residues. The data in tables (1) and (2) are the same

as those of figures (4) and (7) respectively. In the following tables, we compare the average signal

power and the resulting prediction residues using both the LP and IDLP.

The experiments show that the results using LP always provide the optimal performance and

are significantly smaller than the average signal power, thereby the storage requirements can be

reduced. It must be emphasized that the performance depends on the test images. The results get

worse when there are large variations in the images large, e.g. edges or lines. This is the limitation

of the bach least-square method which takes into account of all the data, so that the results can

not adapt the quick change sof the outside environment. The above result can also be regarded as

a tradeoff between performance and complexity. Although complicated algorithms would take lots

of time, it would also provide optimal performance, i.e. require minimal storage requirements.

6
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I Average Signal Power (dB) 1DLP (dB) LP (dB)

4 3.73 -1.04 -6.22

6 3.69 -1.16 -8.16

8 3.70 -1.55 -8.32

10 3.69 -0.52 -8.56

12 3.68 -1.24 -8.59

14 3.68 -0.88 -9.04

16 3.68 -1.15 -9.89

Table 1: Comparison of Average Signal and Residues Power Using IDLP and LP for Different M

(Number of Angular Points)

M Average Signal Power (dB) 1DLP (dB) LP (dB)

4 5.69 -1.10 -6.97

6 5.68 -1.04 -8.95

8 5.68 -1.57 -9.84

10 5.68 -1.36 -10.12

12 5.68 -1.29 -10.22

14 5.67 -0.97 -11.07

16 5.67 -1.16 -12.03

Table 2: Comparison of Average Signal and Residues Power Using 1DLP and LP for Different M

(Number of Angular Points)
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ABSTRACT where the S,,±i are defined from the {k,,} and {h.,, in

(15) below, and the ij' element of the system matrix has
New fast algorithms for solving arbitrary Toeplitz-plts- the form

Hankel systems of equations are presented. The algorithms k, = k.(i - J) + A-20 + j) (2)
are analogues of the split Levinson and Schur algorithnis,
althoug, the more general Toeplitz-plus-Hankel structure for arbitrary functions k 1(.) and A2( J Note in particular

requires that the algorithms be based on a four term recur- that the system matrix need be neithtet symmetric nor pr-

rer.ce: relations with previous split algorithms are noted. symmetric; the only requirement i, that all of the centtal

The algorithms require roughly half as many multiplica- submatrices be nonsingular.
tions as previous fast algorithms for Toeplitz-plus-Hankel Updating (1) from i to i+ 1 increases the size of the na-

systems. trix by two; this requires two updates. and require, k,/2 /2

. INTRODUCTION be defined at half-integer values (/2. )/2). If /2 +j 2 is not
an integer, let k, 1 2 .,/ 2 = 0; if t/2 + ),!2 is an integer, assign

ToeplitL-plus-Hankel (T1) sy.,tems of equations have ki, 12./ 2 such that the matrix wit Ii i ' coordinate A,/2.j/ 2 is
many important applications, such as linear prediction for TH. If k,, is speca by the fori 2. this can be (one ens-

nonstationary processes with TH c,,ariances. two-sided au- ily by inserting the half-integer vales in :he functions ki, )
toregressive spectral estimation n11. linear-phase prediction and k2(') (note that the argument, will always be integer i)
filter design [2]. Hildeorand-Prony spoctral line estimation Omitting the first and last row- of (1) allows it to be

procedure [3!, and PADE approximation to the cosine 'e- rewritten as
ries expanrsion of an even functi i4]. Integral equations
with a TH kernel arises in atiio'.lperic scattering [5] and 0 I
rarefied gas dynamics [6]. 0=k.+h,.+ E h -i,-1 < 3 < -1. '3

Fast aigorithms for TH syvstviji have appeared in j7]-
[9!. The new algorithms of this paper can be viewed as,plzt versions of those of [8]. or as i,-,eralizations of the split Now define the interpolated systet, f (31 a.-

algorithms of [10) from symm,'t.ic Toeplitz to arbitrary TH
sys t ems. k

The heart of the new algoritlins is a four-term recur- 0 = k,+I/2.j+1/2 + h,+ 1/2,)+1/2 + Y_ +i/2.n,."+ /2

rence that generalizes tie three-terin recurrences of [10] to - -I -/24

TH matrices. This r -currence requires two ,iultiplications a4)
per update. half the number reqtired by the algorithms and similarly for - - 1/2. The interpolated systems for
of (7-[9[. This is analogous to the 30'7( savings in multi- various -r,4ers are auxiliary systemns of TH systems that

plications for the split algorithm, of [10] over the classical are solved along with (3) by the algorithms to follow. This

Levinson and Schur algorithms. artifice is necessary in order to obtain split algorithms solv-
ing nested systems.

11. DERIVATION OF FOUR-TERNI RECURRENCE nnetdstm.
B. Derivation of Four- Term Recurrence for h.,

A. The Basic Problem

To make the derivation easier to follow, we consider
only positive i. Define the discrete wave operator A of a

We consider the solution of the TH system function fj as

[ .. .-. . .... - 0, h *_0 S1- . Af,= f,+1/2,1 + f,-12., - f,. /2 -f, -1/2 (5)

k _. . ._

0 0 A is the discrete version of the continuous operator ( , -

S. k,.. 0 ,... ) Note that the TH structure (2) is equivalent to

- 2253 -
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Ak,., = 0; for integer i + j. (6) The existence of a unique solution t,, (12). which can easdv

be found in closed form, is proved in Section V below.

Apply the operator A to (3) by writing (3) with i re- B. New Split Levinjon Algorithm
placed with i ± 1/2. and then j replaced with j ± 1/2. and Intializaton: h ±,o = -k ± 1, i 1
then adding and subtracting (4 appropriately. Using (), Computation of I Vknowii
(6 , the non-singularity of (11. an) oe algebra gives [16] and h,,, (from previous recursin ) ,teg 11). Compute I"'

Ah, hU 2  and V2 from S,.±, and S,i.± , ,tiug (12)
h- 12) , -t/-3/2) < 1 '-3/2 Update h,,.: Compute h± ,+ 2j ±,-I /.) using (SJ

where we have defined the potent.f, [11, 7) Compute h, 1/2. j . ) i _ o - 3,2) tiiig (9)
Compute h-(,+,4 . similaily ittig (T).
At this point the recursion is cmplete. The computed

, ., ,/.- _hi, for integer/ half-integer i and i solve the original svs-
(8)

Eq. (7) can be written as tern (3)/interpolated system (4), m1.e'ctively: note that Ivo
recursions are needed to increase thb sie7. of the system 13)

h by two (i.e.. update i to i + 1).
h'+i/2"j = h"2 +l/ 2 +h",-l/2 +( ~-l- I /i +- 2h-.'s-IT21 . This algorithm differs from the split Levinson alo-

9) rithm of 110) in two respects. First. the non-symmeric TH
This is the four-term recurrence at the heart of the new system matrix requires four sequences V, and l', of p,-
algorithms. It is analogous to the three-term recturrence on tentials and the four-term recurr,.nre 13). The symmetric
which the split algorithms of [10] are based, although there Toeplitz system matrix solved by the split Levinson ago-
are some differences (see Section VI). rithm of [101 requires only one sequence of potentials and

III. NEW SPLIT LEVINSON ALGORITHM a three-term recurrence. Second. the split Levinson algo-

The four-term recurrence (9) cas be propagated in in- rithm of (101 propagates not h,,, but h,,, + h,._,; this is
creasing -terande-urrence3/2) e pr3/2Nopte that n- more efficient for symmetric Toeplitz matrices, but requirescreasing jz1 and -(l - 3/2) S ji<l - 3/2. Note that recovery of h,.,, from h,., + h,.-, st termination.

for i an integer/half-integer, j will take half-integer/integer
values, respectively. However. since (9) does not hold for IV. NEW SPLIT SCHUR ALGORITHM
j = ±(z - 1), we must update h,±,_ using (8). and sinii- The "inner product" (11) is a computational bottle-
laly for h Also. (8) and 19) require V, and V,2 to neck, as in the classical Levinson algorithm. We now derive
be supplied separately, computed fioin k,,o; note that (8) a new split Schur-type algorithm for arbitrary TH matrices.
cannot be used to compute V,' ard V2,. since (8) is needed This algorithm can be propagated in parallel with the split
to update h±,.z,_. We now show how ,' and V,2 can be Levinson algorithm derived above: this avoids the compu-
computed from previously comptted h,., and k,.r tational bottleneck (11). The same idea was used for the

A. Computation of Vi and i',' classical Schur and Levinson algorithms in [12'
The first step is to show that the forward prediction

Setting j = i - 1 in (3) and (4) gives error filter satisfies the four-term evorrence (9). From this.

we show that the S,., defined in (11) (now for all j > i) also
/2.~- / +satisfy (9). Then (9), initialized ,iumg ,. . can be used to

h /"-/=-k+1/2"-/2 - h.+1/2,nkn-1/2 compute V, and V 2 quickly.
n=-i-1 /2)

(I0a) A. Four-Term Recurrence for 5,

h...- h,,k.... . (10b) Define 0,., as the forward prediction error filter ,., =
6,j + h,,,. Clearly 0,,, satisfies (9) for -(Y - 3/2) < _
i - 3/2 since 6,, = h,,, for these vaihes. At j = ±(i - 1/2)

Eq. (10b) requires only k,,) (known) and h,,, (from the or ±(i+ 1/2) 45j, satisfies (9), since tmi, reduces to (8). Ard
previous recursion); however, (.0a) requires h,+1/ 2,, which for IJj > i + 3/2 (9) reduces to 0 = 0. Hence (9) with It,,
ha- not yet been computed. Substituting (19) into (10a) replaced with o,., is true for al: , an integer/half-intexer
and much algebra results in the following. Define the Schur and j a half-integer/integer:
vartables

,-rabls ,+n/2,2, = 4',.,+i/2+4,J-/2+(L~ -~ 1 lo,..1/2..+V',20_(,-I 12).j

S t ,) = b ., + k ., + ± , ,1. = : e . ( 1 1 ) ( 1 3 )

Next, extend the definition S,. in (11) to all integerS
and half-integers i and j such that , + j is an integer. From

Note S,,, can be computed from ktiown k,., and h.,,. Then (3) and (4) S,, = 0 for -(i - 1) !S i _ - 1, and
it may be shown that 1 o.[ s-, .,,t s .- ,-,I + t " S,t. - - - ... Si., = " (bj. + h, )(b., + . . . .j) =~ .(. ij-n

- 2254-



= + A, . - 2() (14) The 2 x 2 systems (12) and ( 17) have unique solutions

if the central submatrices of the system matrix (1) are non-

whiere * denotes a convolution iii singular. To see this. suppose that the 2 x 2 system matiix

Since 13, is linear in fnctiiin .f i. it may be con- in (12) and (17) is singular. Then the second column is

'.rived with klT } Adding 13; 1,, tht- convolution of (13) a mufltiple (say m) of the first ccluimn, and the column

wi'. ; :k'j and the convoutix if Tte tme-reversal of 131 vector 1.- , (h-,., - mh.,,), . - ,,fil solves the homoge-

neous system associated with (1). which is impossible as

'A, th k 2  and using 14) gives long as the system matrix in (1) is noasingular.

3,-1 2 )/2 ,-,. Z -i S,_/.2-, S-(,_1/2). VI. RELATION WITH PREVIOUS SPLIT ALGORITHMS

Hence S, also satisfies the four-t-rin recorrence (9.) A. Relation to the Split Algorithm_- of /10/

To show how the new algorithm, reduce to the split
B New Splht Schur Algorith algorithms of [10. we first consider the class of TH matrices

Initialization. 5 o = ko.j: Sjj .+j/ = k±i/2.1+1/2 such that k,., = k-,.-]. In terin (if 12) both '.. I and

Computation of t. V2 Compute V,' and V,2 from k2 (.) are even functions; note that cm-rriance functions of

5, , and S_- 2.±,-i/2 using (12) Similar equations are time-reversible random processes have this property. The

usea to compute 1, and 1-2 ,  set of centrosymmetric matrices maitrices that are both

Update 5,,, )(j > i using ( 15) persymmetric k,,, = k- ,-, and svumetric k,, = Ab, I is

At this point the recursion is complete. The split Schur a subset of this class. From (3) h, = h-, -, from (11)

algorithm can be run in paallel with the split Levinson S,, = 5_,. and from t12 ' = V ,. and V,2 =

aigothn. supplYing the potenii V.,l and I", while hv- Hence the computations for i < t') ae all unnecessary

pasing the "inner product" c,, ltacn 11 I (( 12) is still We can go fiirther Defining

nece.;arv '. as si igested in '121 ft re classical algorithnis

Note 4-, " and 4- , for _ccI'c ,, and half-integer hic = h V h , I ' l I

ri - , 2 uniquely det.rnmiin- t, ' a . ;, i - J an in- l9,

tege:. using 'G replacing j with -J in (7) and i 1-)) and adding to i7 acid

If the original system 3 i a ,i-cr-lizal ,on of an inte- (15) respectively results in

gral equation. then S, 1 and iii, ,, ) in ll) 1dominates

the ther te ms if = j Inth cth c, ,Il. -;oition to1 12 is _a,4 = VIa -,; A. Y , _I201

sirhply 1V =S,-I _- - S., alid " = 5,_ -,-i' - .

V L'TION OF ABITR -AD) TH SYSTEMIS Adding the two equations o' k 12, I., to he corpoccl

from e. c by

The plit algorn-inih ;coi, , , .... le yvsterns 3. alit

4t: hence they akosolve' 1 wuch s:', .defirned a., V ) ci c-i - ' -1 211

\P ,w Cols5lier tlie genleral i, ,,c,$, i.

From 3) and (19, a,. is the solciti,,t tc,

k6 1 ,bk,, + k a. o ,,, k' . (22)

where the right side is, ncow ariii a

Define jcj -I < I) r ciey as follows Let The solution to (22) can be recursivey computed using the

De ti ne ol.iti'cn to the 2 2 rfiic , three-term recurrences (20). along with (21). These equa-

tions have virtually the same form as the split algorithms

I _ r ~ ~ c S 1 of [101. evtn though k,., u not Toeplits.
- c, , s ) I To see what is happening here. use (2) to rewrite t t 'e

• L left side of (22) as

Then the solution to t 16 is g ivi , kl,, + k,.-, = kl(i -j)+ k2(t + 1) + k|(i +))+ k 2 (? -J)

1= + , , ' ;. (18) =k(i-j)+k{c+J) (23)

where k(i) = kI(t) + k2 (i). Froni (19) a,, = a,.-,_, and

These equations may be derived eaitily by taking linear coan- the right side of (22) can be rewritten usir., this and (23),

binations (weighted by the c*,) of the columns of (1) for yielding

increasing a and equating to (16) Note how this relies on

the split algorithms solving nested qystems of equations ak ) = a,- + i (24)

,increases, ,,
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DISCRETE FAST ALGORITHMS FOR TWO-DIMEN-

I
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ABSTRACT

in the radial direction only; the prediction filters estimate

New discrete generalized split Levinson and Schur algo- the random field at a given point using observations from all

rithns for the two-dimensional linear least-squares predic- points of smaller radius. The algorithms are generalizations

tion problem on a polar raster are derived. The algorithms of the split algorithms [5,61

compute the prediction filter for estimating a random field This paper is organized as follows. In Section II, the
,t the edge of a disk, from noisy observations inside the disk. two-dimensional analogues of the discrete split Levinson re-
The covariance function of the random field is assumed to currence and split Schur recurrence for the linear prediction
have a Toeplitz-plus-Hankel structure for both its radial part problem on a polar raster are derived. The derivation is
ad its transverse part. This assumption can be shown to based on the assumption that both the radial part and the
be closely related with some types of random fields, such as transverse part of the covariance have Toeplitz-plus-Hankel
isotropic random fields. The algorithms generalize the split structure. In Section III, an isotropic random field is shown
Levinson and Schur algorithms in two ways: (1) to two di- to have a Toeplitz-plus-Hankel covariance. the overall com-
mensio is; and (2) to Toeplitz-plus-Hankel covariances. plexity of the proposed algorithm is evaluated, and compar-

isons with the result of [7] are made. Section IV concludes
with a summary and a discussion of how the results of this

I INTRODUCTION paper can be used to solve the general smoothing problem.

The problem of computing linear least-squares estimates of II DERIVATION OF THE RECURRENCE

two-dimensional random fields from noisy observations has A. Basic Problem
many applications in image processing. In particular, the
two-dimenional discrete linear prediction problem is a useful The problem considered is as follows. From noisy ob-
formulation of problems in smoothing and image coding and servations {yI.,N} of a zero-mean real-valued discrete ran-
restoration[11, dom field {xi.N} at the points (i, N) of a polar raster on

If the random field: (I) is defined on a rectangular lat- a disk, compute the linear least-squares estimate of X,.N for
tice of points: (2) is stationary; and (3) has quarter-plane or all points on the edge of the disk. Here i is an integer ra-
asymmetric half-plane casuality, then the two-dimensional dius from the origin, and N is the integer index of the argu-
linear prediction problem may he solved using th- ,m!16- ment(angle); if there are M points distributed on the circle
channel Levinson algorithm [2.3,4]. of any radius, then (i, N) is the point at radius i and angle

ftowever, in some medical imaging problems, and in spot- 27rN/M.
light synthetic aperture radar, data are collected on a polar The observations {Y,.Nv} are related to the field xZj by
raster of points, rather than on a rectangular lattice. Al- Y..N = XiN + viN, where {ViN} is a zero-mean discrete
though such data can be interpolated onto a rectangular lat- white noise field with unit power, and {x,,N} and {vi,.}
tice. this is necessarily inexact: it also affects the covariance are uncorrelated. The covariance of {x,,v}, E[X,.NX-,N.] =

function. For restoring noisy images, image coding, etc., it K(i,Ni;j, N 2), is assumed tobe a non-negative definite func-
is clearly desirable to develop analogues of the multichannel tion with Toeplitz-plus-Hankel structure in both arguments.
Levinson and Schur algorifhms applicable to discrete random The estimates of zi,N at the edge of the disk are computed
fields defined on a polar raster. from the observations {Yi.NI using

This paper develops these analogues. They generalize
previous results in three ways: (1) the random field is de- i-I M

fined on a polar raster; (2) the random field is not required x,.N = E_, E_, h(i,Nl;j,N2)yN, (1)
to be stationary; rather, its covariancc must have Toeplitz-

plus-Hankel structure in both the radial and transverse di- The optimal prediction filters h(i, NI;j, N2 ) are computed
rections; and (3) the quarter-plane or asymmetric half plane by solving the two-dimensional discrete Wiener-Hopf equa-
causality assumption is replaced by a more natural causality tion
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K(i,N;j, N 2 ) = h(i,N,;j, N2) for all -(i - 2) < j !5 (i - 2) and 1 < NI, N2 < M. Herewe have defined the potentials

, M

+ , h(i,NI;n, N3 )K(n, N3 ;j, N 2 ) (2) 1(N1 ,N2 ) = -[h(i -. ; - - h(i.. ;i - l,.V)1
- 01 V=1 V+(,NO=-hi+21 N, 2 2

for all -(i- 1) < j < i- 1 and 1 < NI,AN2 < M . The goal is 1 1 (8)

to derive a fast algorithm for solving (2) when K(i, NI;j, N 2) V,-(N,. N 2) = -[h(i+-, Ni; -i+-. N 2)-h(i. NI; -i+1..V2]
has the Toeplitz-plus-Hankel structure shown (5) and (6) (9)
below. Equation (7) is the basic recurrence that is the heart of

We decompose the apdate procedure into two steps by the Levinson-like algorithm. The left side is the difference of
introducing an interpolated (auxiliary) system. As shown in two two-dimensional discrete Laplacian operators, analogous
Figure 1, between every pair of points in the radial direc- to the difference of one-dimensional discrete Laplacian oper-
tion, we insert an auxiliary point. The covariance function ators appearing in the split algorithms of [5]. The right side
K(i, NI;j, N2) is interpolated at these auxiliary points such generalizes the three-term recurrence in [5] to a multi-term
that the block Toeplitz-plus-Hankel structure (see (5),(6)) recurrence; this is analogous to the matrix recurrence in [6].
is maintained. Then the prediction filter can be defined at However, it is applicable to non-symmetric block Toephtz.
the interpolated points as the solution to the interpolated plus-Hankel systems (see [8]).
system, which has the form of (2) but is specified on the When i is an integer and j ia a half-integer, equation (7)
interpolated points. will update h from the real points to the interpolated points.

When i is a half-integer and j is an integer, equation (7) will
B. Derivation of the Levinson-Like Recurrence )Wl

update h from the interpolated points to the real points.

Define the discrete wave operators A, and A, by C. Derivation of the Schur-Like Recurrnce

1 N "1 .
A,f(i, NI;j, j , N2' 2) + f(i N;j, N2) We still need to calculate the potentials V,+(N 1, N 2) and

V- (NI, N2) at the beginning of every update so that we can

A f j + 1+ N) (3) use the recursive formula (7). Since an inner product is a bot-
- ,N -, -2 ) tie neck in a parallel processing environment, we overcome

NI this difficulty by introducing the Schur variables (defined at

Af(i,N1;j,N 2) = f(i - ,(N + 1));j, ((NV2))) integer and half-integer points)

+f(i -,((N - 1));j, ((N2))) - f(i-I, ((N));j,((N2 + 1))) si, N 1;j, N2) -.. N;,.N, + K(i, N;j, N 2) - h(i,
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ hi Nl ,(N )) Si N;j 2 iN; V; j, N2)

Ii-I 
M

- f(i- , ((NI));j, ((N 2 - 1))) (4) E E h(iNi;nNs)K(nN 3;jN 2) (10)
2n----(t-l) N3=-I

where A, and A9 can be regarded as discrete versions of the where bi.rj;N2 = 0 unless i = j and N, = N2 , in which case
continuous operators ( " - 0',) and ( - - -- ,) for the it is unity.

radial part and transverse part, respectively, and ()) means Since the Schur variables are the linear combinations of
a mod M operation. the prediction error filters btN1 j .jv - h(i, N; j, N 2 ), equations

We assume that the covariance function has the block (7)-(8) show that s(i, NI;j, N 2 ) satisfies the recurrence (7),
Toeplitz-plus-Hankel structure but now for all j:

N= 0 (5) 9(+ ,Nl;jN 2) = s(i,Nl;j + -,N2) +s(i,N;j - N2)

AK(i,N;j,N) = 0 (6) 2 2+2

A , N 0_s(i_, N,; j,N)+s(i_21, N 1;j,N2+l)+s(i 1, N,;j,N2 -)
Some examples satisfying (5) and (6) can be found in [8]. N 2

Applying the Laplacian operator A = A, + A# to the i
equation (2), we have after some algebra [8] 2 N3 I

111 [V(N, N)S( N3;j, N 2)+Vi(NI,N3)s(_(i_!),N3;j, N)]
h(i+2 N;j,N2 )=h(i,NI;J+ , N2)+h(i, NI;j - , N2) 12

-h(s-I Nz; j, N.)+h(i-, NI;j,N2 +1)+h(-, NI;j,N2 -1) Equation (11) is the basic recurrence for the Schur-like

2 2' 2 algorithm; for -(i - 1) _ j < (i- 1), (i, NI;j,N2) = 0 by

N M (2).

2 N, + 1; j, N2) 2 Setting j = (i- 1) and -(i- 1) in (11) respectively, we-h~ -N3 =1 can solve for 1/i+ and V- in closed form as (8]:

[V+(N, N3)h(i-, ,;j, N2)+ V-(NI, N 3)h(-(i-!), N 3;j, N2 )] = (X-Y(-- .-)( ++- +-i-)-S.I+l)
(7) V- = (y _ +-

2018



where we have defined the M x M matrices of a isotropic random field with covariance K(x, y -)
S-A2which is often used in image modeling. In polar coordinates

[VN~ x.: ' 1=  .V ); [V]. , I ) (14) on a discrete polar raster, and if p = 1, this covariance func-

S].v,.v2 = s(+( A), - . 2) (15) tion can be represented as

1 1 K(i, NI1;j, N2) = p'
'+i

2
-2 co(2.(N1 -N 2)/M)

X...N= -
V0 - s(i, NA'; Z, .V2) 'h) - ] l[ )2  l(N M , 1 +

12 2+
+ S(i, V; li - ', V2) (16) ([(i+j)2+(i-j)2 ]-(i+j)

2 -(i-j)1cos(2ir(Ni-N2 )/N) In p(20)

= s(i - j.1 , -(i - 2-), N2) - s(i, NI; -i. N2) Note that the exponent has the Toeplitz-plus-Hankel struc-
I- ture required by (5) and (6), and that it is not merely block-

Aas(i, N1 ;-(i - ),N) (17) Toeplitz; hence the multichannel Levinson algorithm is not
2  applicable. If p = 1, the entire covariance satisfies (5) and

D. Summary of Overall Procedure (6). Indeed, any slowly-changing function of distance satis-

The overall procedure can be summarized as follows. Let fies (5) and (6).

I,_ be the largest radius (maximum radial prediction or- B. Computational Complexity
der). Thep for all I < N1, N2 < M:

We determine the number of multiplications/divisions
1. Initialization (MADs) needed to solve (4) up to order i = I,.. The ini-

Compute h(:, N1;O. N 2), h(+ 1, N1;0, N 2) using (2). tialization of the Levinson-like recurrences requires 2 M x M

Compute s(±-1,N1 ;j,N2), s(±I, N1;j,N2) using (10) matrix inversions and 4 M x M matrix multiplications, or

for all j = ±1, ... ,±21-.... 2(- + - ) + 4M 3 MADs. The initialization of the Schur-
like recurrences requires 81,,. M x M matrix multiplications

2. Propagation of Split Schur-Like Algorithm , or 81,, M3 MADs. Each Schur-like recursion update of

A Computate the potentials V,+(N 1 , N 2) and V,-(N 1 , N2 ) s(i, N2;j, N2) from/toi+ requires 16(l, -i)M
2 MADs.

and (13); Computation of the potentials requires 4 M x M matrix
using (12) ainversions and 6 M x M matrix multiplications. Finally,

B Update the Schur variables using (11) fori = ±(i+ updating h(i, NI; j, N2 ) from i to i + I in the Levinson-like

2) recurrence requires 4(2i + 1)M 2 MADs. The total number

3. Propagation of Split Levinson-Like Recurrence of multiplications needed to solve (2) up to i = I,_ is equal
to [81

A. Propagate the Boundary Points:

I I .1 24I.xM' + I--(83 + M)( M
h(i+-2 I 2: ;-- N2) = h(i,N,;i-1, N2)-V,+(NIN2) 3 3 (21)

(18) For large I,., this is much le-q than the number of

h(i+-, N,; -i+- , N2) = h(i, NI; -i+1, N2)-V,-(Ni, N2 ) MADs required for the solution of (4) by Gaussian elimina-

2 2 (19) tion, which would require (2t-.M + {2 O 0(I 3,aM
3 )

B.Propagate Non-Boundary Points: multiplications. In addition, as shown in the above proce-

Update h(i, V; j, N2) using equation (7) forj = dures, this procedure is highly parallelizable. Therefore, the
overall reduction in time complexity would be even more sig-

1) to 0 =(i- 2). nificant using vector/parallel processors.

4. Repeat steps 2 and 3 from i = I to I..., with increment
C. Relations with Continuous Algorithms

2

Note that the above generalized Levinson and Schur re- It is instructive to examine the continuous-parameter lim-

currences (7) and (11) are highly parallel, and perform the its of some of the equations of this paper. Let the intervals

same t "pe of in-place computation. This allows a highly between points be 6, in the radial direction and 6, =b radi-

parallel and pipelined architecture to be developed for this ans in the transverse direction. Introducing a radial weight-

algorithm. ing factor, and taking limits as b, and b# go to zero result in
the following transformations:

III DISCUSSION
1. The discrete Wiener-Hopf equation (2) becomes the

A. Isotropic Random Field Wiener-Hopf integral equation;

Fer an isztr3pic random field, the covariance is a function 2. Si,;j, becomes a continuous two-dimensional impulse

of distance only, i.e., if x and y are two arbitrary points in the function, dominating the other terms in the defini-

plane, then K(x,y) = K(Iz - yl). Consider the special case tion (10) of the Sdur variables. The recursion (11)
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now propagates the non-impulsive part of the Schur Numerical studies have shown that approximation (2)
variables, so that (12) and (13) may be replaced with give very good results for b, -- 0.001, but discretization is
V + z X and V- t Y. Compare this to much more sensitive to non-infinitesimal 6.

V(z,01;0 2) = -(- + 9)s(x,O;y = x,02) (22) rV CONCLUSION
New fast algorithms for solving the discrete 2-D Wiener.

where x and y are continuous radii and 01 and 02 are Hopf equation on a polar raster when the covariance function
continuous angles. Equation (22) has the form of (4- has block Toeplitz-plus-Hankel structure have been derived.
17b) of [7]. Similarly, the continuous version of (13) has Since we have performed explicitly discrete derivations, in-
the form of (4-2) of [7]. Equation (7), with its difference stead of just discretizing the continuous versions, the algo-
of discrete two-dimensional Laplacian operators on the rithms work regardless of the number of pcints used. If ad-
left side, is clearly analogous to (A, = Laplacian with jacent points are close enough, then the algorithm would
respect to x) reduce to the continuuus case [7].

2v The smoothing filter for estimating the points inside the
(A.-A,)h(x, 01; Y, 02) V(x, 01; 03)h(x, 03; Y, 02) dO3  disk can be computed from the prediction filters using a gen-

(23) eralized discrete Bellman-Siegert-Krein identity. The overall

which is the two-dimensional form of (4-1) of [7]. How- complexity is reduced compared with Gaussian elimination
ever, (23) is NOT the continuous limit of (15) with [9].
radial weighting, since I'V( /5f(x)) 2-- +.A  - Unresolved issues include mapping of this algorithm into
; )f(x), which is not the radial part of the 2-D Lapla- optimal array processor architectures, the numerical stability

cian. On the other hand, ' 2(xf(x)) = (d-+ )f(), 1 of the algorithm, and practical applications of this algorithm

which is the radial part of the 3-D Laplacian. This in problems such as image restoration and coding.

shows that the results of [7], derived for the continu- ACKNOWLEDGMENT
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Fast algorithms for computing the linear least-squares estimate of a multi-dimensional
random field from noisy observations inside a circle (2-D) or sphere (3-D) are derived. The
double Radon transform of the random field covariance is assumed to have a Toeplitz-plus-
Hankel structure; this is equivalent to the multi-dimensional spatial displacement property
(AX - A,)k(x, y) = 0. Note that this only reduces the number of degrees of freedom by
one; homogeneous and isotropic random fields are included as special cases. The algorithms
exploit this structure to reduce the amount of computation needed to solve the multi-
dimensional Wiener-Hopf equation

k(x,y) = h(x,y) + Jh(x,z)k(z,y)dz, jyj < jxi, x,y,z E

The algorithms can be viewed as generalized split Levinson and Schur algorithms, since
they exploit this structure in the same way that their one-dimensional counterparts exploit
the Toeplitz structure of the covariance of a stationary random process. The algorithms
are easily parallelizable, and they are recursive in increasing radius of the hypersphere of
observations. They have the form

- A,)h(x,y) = JV(xIe)hlxje)de ell -- 1, x,YER3

where V(x, e) characterizes the filters h(z, y) for ylj < Il < Ilx much as the reflection coeffi-
cients characterize the 1-D prediction filters of all orders. The discrete forms of the problem
and the algorithm are shown to be simply the obvious discretizations of the equations given
here.

It is important to note that these algorithms do NOT assume quarter-plane or asym-
metric half-plane support for the filter, as do previous "2-D" Levinson algorithms that
are really multichannel 1-D algorithms. The new algorithms are true multi-dimensional
algorithms that do not attempt to reduce dimensionality, but only take advantage of an
assumed structure of the covariance function.

An earlier version of this work was presented at the ICASSP in New York. The new
material presented here includes:

1. The discrete form of the problem, and the discrete algorithm solving it;

2. Numerical results on the performance of the algorithm;

3. A procedure for estimating a covaxiance of the desired form from a sample function of
a random field (i.e., a multi-dimensional "Toeplitzation plus Hankelization")
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